精英家教网 > 高中数学 > 题目详情
12.若关于x的不等式x2+|x+a|<2至少有一个正数解,则实数a的取值范围是(  )
A.(-2,2)B.(-2,$\frac{9}{4}$)C.(-$\frac{9}{4}$,$\frac{9}{4}$)D.$(-\frac{9}{4},2)$

分析 分a≥0,-2≤a<0与a<-2讨论,作函数y=|x+a|与y=2-x2的图象辅助,注意是存在性问题.

解答 解:当a≥0时,x2+x+a<2,
即x2+x<2-a,
故2-a>0,
解得,0≤a<2,
当-2≤a<0时,
作函数y=|x+a|与y=2-x2的图象如下,

满足不等式x2+|x+a|<2至少有一个正数解,
当a<-2时,0<x<2时,x2-x-a<2,
2+a>x2-x=x(x-1),
且x2-x的最小值为-$\frac{1}{4}$,
故2+a>-$\frac{1}{4}$,
故a>-$\frac{9}{4}$,
综上所述,a∈$(-\frac{9}{4},2)$.
故选D.

点评 本题考查了分类讨论的思想应用及数形结合的思想应用,同时考查了存在性问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知点A(-1,0),F(1,0),动点P满足$\overrightarrow{AP}$•$\overrightarrow{AF}$=2|$\overrightarrow{FP}$|.
(1)求动点P的轨迹C的方程;
(2)直线l过F交曲线C于A、B两点,若线段AB的长为6,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.记函数f(x)=$\sqrt{x-1}+\sqrt{5-x}$的定义域为集合M,函数g(x)=x2-2x+4的值域为集合N,求M∪N和M∩(∁RN).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设f(x)是定义域为R,最小正周期为$\frac{3π}{2}$的函数,若f(x)=$\left\{\begin{array}{l}cosx,({-\frac{π}{2}≤x<0})\\ sinx,({0≤x<π})\end{array}$,则$f({-\frac{14π}{3}})$的值为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{bx}{a{x}^{2}+c}$,f′(0)=9,其中a>0,b,c∈R,且b+c=10.
(1)求b,c的值及函数f(x)的单调区间;
(2)若0<a≤1,求证:当x>1时,(x3+1)f(x)>9+lnx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知0<α<$\frac{π}{2}$,sinα=$\frac{1}{3}$,则cosα=$\frac{2\sqrt{2}}{3}$;cos2α=$\frac{7}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知圆C:(x-3)2+(y-$\sqrt{7}$)2=1和两点A(-m,0),B(m,0)(m>0),若圆C上存在点P,使得∠APB=90°,则m的最大值为(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数$f(x)=sin(2x+ϕ)-\sqrt{3}cos(2x+ϕ)(0<ϕ<π)$是R上的偶函数,则ϕ的值为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某市出租汽车起价定为8元(行程不超过3千米),行程超过3千米,但不超过15千米时,超过3千米部分每千米车费2元,行程超过15千米时,超过15千米部分每千米车费2.5元.由于国际国内油价的提价,每乘坐一次出租车还得付1元的燃料附加费.试求车费与行程之间的函数关系,并求行程10千米时应付多少车费.

查看答案和解析>>

同步练习册答案