精英家教网 > 高中数学 > 题目详情

【题目】下列说法错误的是  

A. 棱柱的侧面都是平行四边形

B. 所有面都是三角形的多面体一定是三棱锥

C. 用一个平面去截正方体,截面图形可能是五边形

D. 将直角三角形绕其直角边所在直线旋转一周所得的几何体是圆锥

【答案】B

【解析】

由棱柱的性质可判断A;可举正八面体可判断B;用一个平面去截正方体,与正方体的五个面相交,可判断C;由圆锥的定义可判断D

由棱柱的性质可得棱柱的侧面都是平行四边形,则A正确;

所有面都是三角形的多面体不一定是三棱锥,比如正八面体的各个面都是正三角形,则B错误;

用一个平面去截正方体,与正方体的五个面相交,可得截面图形是五边形,则C正确;

由圆锥的定义可得直角三角形绕其直角边所在直线旋转一周所得的几何体是圆锥,则D正确.

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系动点到定点的距离与它到直线的距离相等.

1)求动点的轨迹的方程;

2)设动直线与曲线相切于点与直线相交于点

证明:以为直径的圆恒过轴上某定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)当时,求曲线处的切线方程;

)若函数在定义域内不单调,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于项数为)的有穷正整数数列,记),即中的最大值,称数列为数列的“创新数列”.比如的“创新数列”为.

1)若数列的“创新数列”为1,2,3,4,4,写出所有可能的数列

2)设数列为数列的“创新数列”,满足),求证: );

3)设数列为数列的“创新数列”,数列中的项互不相等且所有项的和等于所有项的积,求出所有的数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】节约资源和保护环境是中国的基本国策.某化工企业,积极响应国家要求,探索改良工艺,使排放的废气中含有的污染物数量逐渐减少.已知改良工艺前所排放的废气中含有的污染物数量为,首次改良后所排放的废气中含有的污染物数量为.设改良工艺前所排放的废气中含有的污染物数量为,首次改良工艺后所排放的废气中含有的污染物数量为,则第n次改良后所排放的废气中的污染物数量,可由函数模型给出,其中n是指改良工艺的次数.

1)试求改良后所排放的废气中含有的污染物数量的函数模型;

2)依据国家环保要求,企业所排放的废气中含有的污染物数量不能超过,试问至少进行多少次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标.

(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆的离心率为,点在椭圆.

求椭圆的方程;

已知为平面内的两个定点,过点的直线与椭圆交于两点,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】企业需为员工缴纳社会保险,缴费标准是根据职工本人上一年度月平均工资(单位:元)的缴纳,

年份

2014

2015

2016

2017

2018

t

1

2

3

4

5

y

270

330

390

460

550

某企业员工甲在2014年至2018年各年中每月所撒纳的养老保险数额y(单位:元)与年份序号t的统计如下表:

1)求出t关于t的线性回归方程

2)试预测2019年该员工的月平均工资为多少元?

附:回归直线的斜率和截距的最小二乘法估计公式分别为:

(注:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是函数的部分图象.

1)求函数的表达式;

2)若函数满足方程,求在内的所有实数根之和;

3)把函数的图象的周期扩大为原来的两倍,然后向右平移个单位,再把纵坐标伸长为原来的两倍,最后向上平移一个单位得到函数的图象.若对任意的,方程在区间上至多有一个解,求正数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

(1)当时,解不等式

(2)若关于的方程的解集中恰有一个元素,求的取值范围;

(3)设,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围.

查看答案和解析>>

同步练习册答案