【题目】在平面直角坐标系xoy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线E的极坐标方程为,直线l的参数方程为(t为参数).点P为曲线E上的动点,点Q为线段OP的中点.
(1)求点Q的轨迹(曲线C)的直角坐标方程;
(2)若直线l交曲线C于A,B两点,点恰好为线段AB的三等分点,求直线l的普通方程.
科目:高中数学 来源: 题型:
【题目】已知点A(0,4),抛物线C:x2=2py(0<p<4)的准线为1,点P在C上,作PH⊥l于H,且|PH|=|PA|,∠APH=120°,则抛物线方程为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:,过点且互相垂直的两条动直线,与抛物线C分别交于P,Q和M,N.
(1)求四边形面积的取值范围;
(2)记线段和的中点分别为E,F,求证:直线恒过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知函数的定义域是,对任意的,有.当时,.给出下列四个关于函数的命题:
①函数是奇函数;
②函数是周期函数;
③函数的全部零点为,;
④当算时,函数的图象与函数的图象有且只有4个公共点.
其中,真命题的个数为( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】国际上通常用年龄中位数指标作为划分国家或地区人口年龄构成的标准:年龄中位数在20岁以下为“年轻型”人口;年龄中位数在20~30岁为“成年型”人口;年龄中位数在30岁以上为“老龄型”人口.
如图反映了我国全面放开二孩政策对我国人口年龄中位数的影响.据此,对我国人口年龄构成的类型做出如下判断:①建国以来直至2000年为“成年型”人口;②从2010年至2020年为“老龄型”人口;③放开二孩政策之后我国仍为“老龄型”人口.其中正确的是( )
A.②③B.①③C.②D.①②
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线的参数方程为(为参数).以直角坐标系的原点为极点,轴的正半轴为极轴建立坐标系,曲线的极坐标方程为.
(1)求的普通方程和的直角坐标方程;
(2)若过点的直线与交于,两点,与交于,两点,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com