精英家教网 > 高中数学 > 题目详情

【题目】下列五个命题:

R上的增函数的充分不必要条件;

②函数有两个零点;

③集合,从AB中各任意取一个数,则这两数之和等于4的概率是

④动圆C既与定圆相外切,又与y轴相切,则圆心C的轨迹方程是

⑤若对任意的正数x,不等式恒成立,则实数a的取值范围是.

其中正确的命题序号是________

【答案】①③⑤

【解析】

①用导数法求出R上的增函数的充要条件,与对比即可判断结果;②求出函数的极值,并判断正负,即可判断结论;

③列出从AB中各任意取一个数所有情况,算出两数之和等于4的基本事件,即可求出概率,判断结论真假;

④按求轨迹的方法求出动点轨迹方程,即可判断结论,或举出反例;

⑤构造函数,求出最小值或取值范围,进而得出的范围,即可判断命题真假.

R上的增函数,

恒成立,.

的充分不必要条件,所以①正确;

递增区间是,递减区间是

极大值为的极小值为

只有一个零点,②不正确;

③集合,从AB中各任意取一个数,

所以情况有共6种取法,

两数之和等于42种取法,所以概率为,③正确;

④设圆心,定圆圆心为

半径为2,依题意,平方化简得

,当时,,当

在定圆上不合题意,当时,,④不正确;

⑤设

上恒成立,单调递增,

,不等式上恒成立,

,⑤正确.

故答案为:①③⑤.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某度假酒店为了解会员对酒店的满意度,从中抽取50名会员进行调查,把会员对酒店的“住宿满意度”与“餐饮满意度”都分为五个评分标准:1分(很不满意);2分(不满意);3分(一般);4分(满意);5分(很满意).其统计结果如下表(住宿满意度为,餐饮满意度为

(1)求“住宿满意度”分数的平均数;

(2)求“住宿满意度”为3分时的5个“餐饮满意度”人数的方差;

(3)为提高对酒店的满意度,现从的会员中随机抽取2人征求意见,求至少有1人的“住宿满意度”为2的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《山东省高考改革试点方案》规定:从年高考开始,高考物理、化学等六门选考科目的考生原始成绩从高到低划分为八个等级.参照正态分布原则,确定各等级人数所占比例分别为.选考科目成绩计入考生总成绩时,将等级内的考生原始成绩,依照等比例转换法则分别转换到八个分数区间,得到考生的等级成绩.

某校级学生共人,以期末考试成绩为原始成绩转换了本校的等级成绩,为学生合理选科提供依据,其中物理成绩获得等级的学生原始成绩统计如下

成绩

93

91

90

88

87

86

85

84

83

82

人数

1

1

4

2

4

3

3

3

2

7

(1)从物理成绩获得等级的学生中任取名,求恰好有名同学的等级分数不小于的概率;

(2)待到本级学生高考结束后,从全省考生中不放回的随机抽取学生,直到抽到名同学的物理高考成绩等级为结束(最多抽取人),设抽取的学生个数为,求随机变量的数学期望(注: ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】众所周知的太极图,其形状如对称的阴阳两鱼互抱在一起,因而也被称为阴阳鱼太极图”.如图是放在平面直角坐标系中的太极图,整个图形是一个圆形,其中黑色阴影区域在轴右侧部分的边界为一个半圆.给出以下命题:①在太极图中随机取一点,此点取自黑色阴影部分的概率是;②当时,直线与黑色阴影部分有公共点;③当时,直线与黑色阴影部分有两个公共点.其中所有正确结论的序号是(

A.B.①②C.①③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-5:不等式选讲]

已知函数f(x)=|2x﹣1|+|x+1|,g(x)=|x﹣a|+|x+a|.

(Ⅰ)解不等式f(x)>9;

(Ⅱ)x1∈R,x2R,使得f(x1)=g(x2),求实数a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=Asin(ωx+)(A0,ω>0||)的部分图象如图所示.

(Ⅰ)求fx)的解析式;

(Ⅱ)若对于任意的x[0m]fx)≥1恒成立,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=Asin(ωx+)(A0,ω>0||)的部分图象如图所示.

(Ⅰ)求fx)的解析式;

(Ⅱ)若对于任意的x[0m]fx)≥1恒成立,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,定义为两点AB的“切比雪夫距离”,又设点P上任意一点Q,的最小值为点P到直线的“切比雪夫距离”,记作,给出下列三个命题:

①对任意三点ABC,都有

②已知点P(2,1)和直线,

③定点动点P满足则点P的轨迹与直线(为常数)有且仅有2个公共点.

其中真命题的个数是(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下四个命题:①设,则的充要条件;②已知命题满足“”真,“”也真,则“”假;③若,则使得恒成立的的取值范围为{};④将边长为的正方形沿对角线折起,使得,则三棱锥的体积为.其中真命题的序号为________.

查看答案和解析>>

同步练习册答案