精英家教网 > 高中数学 > 题目详情
19.下列各式中,值为$\frac{1}{2}$的是(  )
A.sin15°cos15°B.cos2$\frac{π}{12}$-sin2$\frac{π}{12}$
C.cos12°sin42°-sin12°cos42°D.$\frac{{2tan{{22.5}°}}}{{1-{{tan}^2}{{22.5}°}}}$

分析 利用三角函数的公式逐个计算求值.

解答 解:对于A,sin15°cos15°=$\frac{1}{2}$sin30°=$\frac{1}{4}$;
对于B,cos2$\frac{π}{12}$-sin2$\frac{π}{12}$=cos$\frac{π}{6}$=$\frac{\sqrt{3}}{2}$;
对于C,cos12°sin42°-sin12°cos42°=sin(42°-12°)=sin30°=$\frac{1}{2}$;
对于D,原式=tan45°=1;
故选:C.

点评 本题考查了三角函数的倍角公式以及两角和与差的三角函数公式的逆用求三角函数值;关键是熟练掌握公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知f(x)=ax-$\frac{a}{x}$-10lnx,h(x)=-x2+(m-2)x+6.
(Ⅰ)若函数f(x)在其定义域上是增函数,求实数a的取值范围;
(Ⅱ)当a=4时,对于任意x1,x2∈(0,1),均有h(x1)≥f(x2)恒成立,试求参数m的取值范围;
(Ⅲ)当a∈[5,+∞)时,曲线y=f(x)总存在相异的两点P(x1,f(x1)),Q(x2,f(x2)),使得曲线y=f(x)在点P,Q处的切线互相平行,求证:x1x2>1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.直线y=$\frac{1}{2}$x-b与曲线y=-$\frac{1}{2}$x+lnx相切,则实数b的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}满足$\frac{2{a}_{n}}{{a}_{n}+2}$=an+1(n∈N*),且a1=$\frac{1}{1006}$.
(I)求证:数列{$\frac{1}{{a}_{n}}$}是等差数列,并求通项an
(2)若bn=$\frac{2-2010{a}_{n}}{{a}_{n}}$,cn=bn•($\frac{1}{2}$)n,(n∈N*),且Tn=c1+c2+…+cn,求证:1≤Tn<3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.用符号“⇒,?,?”表示下列事件的推出关系:
(1)α:实数x满足x2=4,β:x=2,α?β;
(2)α:x<2,β:x<3,α⇒β;
(3)α:A?B,β:A∪B=A,α?β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知变量x与y线性相关,且由观测数据求得样本平均数分别为$\overline{x}$=2,$\overline{y}$=3,则由该观测数据求得的线性回归方程不可能是(  )
A.y=3x-3B.y=2x+1C.y=x+1D.y=0.5x+2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知平面向量$\vec a$与$\vec b$满足|$\vec a+\vec b$|=1,|${\vec a$-$\vec b}$|=$\sqrt{2}$,且<$\vec a$+$\vec b$,$\vec a$-$\vec b$>=$\frac{π}{4}$,则|$\vec a-5\vec b}$|=$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在几何体ABCDE中,四边形ABCD是正方形,△BCE是正三角形,AB⊥平面BCE,F,G分别是线段CD,BE的中点.
(Ⅰ)求证:直线FG∥平面ADE;
(Ⅱ)若AB=2,求三棱锥A-DEG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知抛物线C:x2=2py(p>0),过点M(0,-2)可作C的两条切线,切点分别为A,B,若直线AB恰好过C的焦点,则P的值为(  )
A.1B.2C.4D.8

查看答案和解析>>

同步练习册答案