精英家教网 > 高中数学 > 题目详情
给定函数:①y=,②y=(x+1),③y=|x-1|,④y=2x+1,其中在区间(0,1)上单调递减的函数是____________.(填序号)
②③
①是幂函数,其在(0,+∞)上是增函数,不符合;②中的函数是由函数y=x向左平移1个单位而得到的,因为原函数在(0,+∞)上是减函数,故符合;③中的函数图象是由函数y=x-1的图象保留x轴上方,下方图象翻折到x轴上方而得到的,故由其图象可知正确;④中函数显然是增函数,故不符合.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知y=f(x)是定义在(-2,2)上的增函数,若f(m-1)<f(1-2m),则实数m的取值范围为           .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数是定义在R上的偶函数, 且在区间单调递增.若实数满足,则的取值范围是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数g(x)=ax2-2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设函数f(x)=.
(1)求a、b的值及函数f(x)的解析式;
(2)若不等式f(2x)-k·2x≥0在x∈[-1,1]时有解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知奇函数f(x)的定义域为[-2,2],且在区间[-2,0]内递减,若f(1-m)+f(1-m2)<0,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=2x-,x∈(0,1].
(1)当a=-1时,求函数y=f(x)的值域;
(2)若函数y=f(x)在x∈(0,1]上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数y=1-的最大值与最小值的和为    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设f(x)是连续的偶函数,且当x>0时是单调函数,则满足f(2x)=f()的所有x之和为(  )
A.-B.-C.-8D.8

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设g(x)是定义在R上以1为周期的函数,若函数f(x)=x+g(x)在区间[3,4]时的值域为[-2,5],则f(x)在区间[2,5]上的值域为________.

查看答案和解析>>

同步练习册答案