【题目】已知函数f(x)=|2x+1|﹣|x|﹣2
(1)解不等式f(x)≥0
(2)若存在实数x,使得f(x)≤|x|+a,求实数a的取值范围.
【答案】
(1)解:函数f(x)=|2x+1|﹣|x|﹣2= ,
当x<﹣ 时,由﹣x﹣3≥0,可得x≤﹣3.
当﹣ ≤x<0时,由3x﹣1≥0,求得 x∈.
当x≥0时,由x﹣1≥0,求得 x≥1.
综上可得,不等式的解集为{x|x≤﹣3 或x≥1}.
(2)解:f(x)≤|x|+a,即|x+ |﹣|x|≤ +1①,由题意可得,不等式①有解.
由于|x+ |﹣|x|表示数轴上的x对应点到﹣ 对应点的距离减去它到原点的距离,故|x+ |﹣|x|∈[﹣ , ],
故有 +1≥﹣ ,求得a≥﹣3
【解析】(1)化简函数的解析式,分类讨论,求得不等式的解集.(2)不等式即|x+ |﹣|x|≤ +1①,由题意可得,不等式①有解.根据绝对值的意义可得|x+ |﹣|x|∈[﹣ , ],故有 +1≥﹣ ,由此求得a的范围.
【考点精析】通过灵活运用绝对值不等式的解法,掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号即可以解答此题.
科目:高中数学 来源: 题型:
【题目】⊙O1和⊙O2的极坐标方程分别为ρ=4coθ,ρ=﹣sinθ.
(1)把⊙O1和⊙O2的极坐标方程化为直角坐标方程;
(2)求经过⊙O1 , ⊙O2交点的直线的极坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】共享单车是指企业在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是共享经济的一种新形态.一个共享单车企业在某个城市就“一天中一辆单车的平均成本(单位:元)与租用单车的数量(单位:千辆)之间的关系”进行调查研究,在调查过程中进行了统计,得出相关数据见下表:
租用单车数量(千辆) | 2 | 3 | 4 | 5 | 8 |
每天一辆车平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
根据以上数据,研究人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲: ,方程乙: .
(1)为了评价两种模型的拟合效果,完成以下任务:
①完成下表(计算结果精确到0.1)(备注: ,称为相应于点的残差(也叫随机误差));
租用单车数量 (千辆) | 2 | 3 | 4 | 5 | 8 | |
每天一辆车平均成本 (元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
模型甲 | 估计值 | 2.4 | 2.1 | 1.6 | ||
残差 | 0 | -0.1 | 0.1 | |||
模型乙 | 估计值 | 2.3 | 2 | 1.9 | ||
残差 | 0.1 | 0 | 0 |
②分别计算模型甲与模型乙的残差平方和及,并通过比较的大小,判断哪个模型拟合效果更好.
(2)这个公司在该城市投放共享单车后,受到广大市民的热烈欢迎,共享单车常常供不应求,于是该公司研究是否增加投放.根据市场调查,这个城市投放8千辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.6,0.4;投放1万辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.4,0.6.问该公司应该投放8千辆还是1万辆能获得更多利润?(按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,利润=收入-成本).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|2x﹣1|,当a<b<c时,f(a)>f(c)>f(b),那么正确的结论是( )
A.2a>2b
B.2a>2c
C.2﹣a<2c
D.2a+2c<2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin2x+2 sinxcosx+sin(x+ )sin(x﹣ ),x∈R.
(1)求f(x)的最小正周期和单调增区间;
(2)若x=x0(0≤x0≤ )为f(x)的一个零点,求cos2x0的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线, ,则下列说法正确的是( )
A. 把上各点横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线
B. 把上各点横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线
C. 把曲线向右平移个单位长度,再把得到的曲线上各点横坐标缩短到原来的,纵坐标不变,得到曲线
D. 把曲线向右平移个单位长度,再把得到的曲线上各点横坐标缩短到原来的,纵坐标不变,得到曲线
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1=1,a2=2,an+2=(1+cos2 )an+sin2 ,则该数列的前12项和为( )
A.211
B.212
C.126
D.147
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com