精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,F是PB的中点.
(1)求证:DF⊥AP;
(2)在线段AD上是否存在点G,使GF⊥平面PBC?若存在,说明点G的位置,并证明你的结论;若不存在,请说明理由.

【答案】分析:(1)利用三角形的中位线定理平移作出异面直线所成的角,再利用余弦定理即可求出;
(2)利用平行四边形、线面垂直的判定定理和性质即可得出.
解答:证明:(1)取AB中点E,连接EF,DE
∵E,F分别是AB,PB的中点,
∴EF∥AP,
∴AP 和DF所成的角即为EF和DF所成的角,即∠DFE或其补角;
由已知四边形ABCD是正方形,
假设PD=DC=a,
则有
∴cos∠DFE==0,
∴DF⊥EF,∴DF⊥AP.
(2)解:G是AD的中点时,GF⊥平面PCB.
证明如下:取PC中点H,连接DH,HF.
∵PD=DC,∴DH⊥PC.
又∵BC⊥平面PDC,∴DH⊥BC,
∵DH⊥PC,DH⊥BC,PC∩BC=C,PC,BC?平面PBC
∴DH⊥平面PCB.                           
,∴HFGD,
∴四边形DGFH为平行四边形,DH∥GF,
∴GF⊥平面PCB.
点评:熟练掌握利用三角形的中位线定理及余弦定理求异面直线所成的角、线面垂直的判定定理和性质定理是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)证明AD⊥PB;
(2)求二面角P-BD-A的正切值大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,AB=4,PA=3,点A在PD上的射影为点G,点E在AB上,平面PEC⊥平面PDC.
(1)求证:AG∥平面PEC;
(2)求AE的长;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求证:平面PBD⊥平面PAC.
(Ⅱ)求四棱锥P-ABCD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面是边长为a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E为PB中点
(1)求证;平面ACE⊥面ABCD;
(2)求三棱锥P-EDC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•武汉模拟)如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距离.

查看答案和解析>>

同步练习册答案