精英家教网 > 高中数学 > 题目详情
10.已知集合A={x|y=$\sqrt{x-2}$},B={y=|y=-x2+1},则A∩B=∅.

分析 求出A中x的范围确定出A,求出B中y的范围确定出B,找出两集合的交集即可.

解答 解:由A中y=$\sqrt{x-2}$,得到x-2≥0,即x≥2,
∴A=[2,+∞),
由B中y=-x2+1≤1,得到B=(-∞,1],
则A∩B=∅,
故答案为:∅.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.解下列不等式,并把解集在数轴上表示.
(1)(7x+3)(4-3x)>0
(2)(x-3)(x-4)>-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设全集U=R,A={x|y=log2(x2-1)},则∁UA=[-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列关系中正确的是(  )
A.${(\frac{1}{2})}^{\frac{2}{3}}$<${(\frac{1}{5})}^{\frac{2}{3}}$<${(\frac{1}{2})}^{\frac{1}{3}}$B.${(\frac{1}{2})}^{\frac{1}{3}}$<${(\frac{1}{2})}^{\frac{2}{3}}$<${(\frac{1}{5})}^{\frac{2}{3}}$
C.${(\frac{1}{5})}^{\frac{2}{3}}$<${(\frac{1}{2})}^{\frac{1}{3}}$<${(\frac{1}{2})}^{\frac{2}{3}}$D.${(\frac{1}{5})}^{\frac{2}{3}}$<${(\frac{1}{2})}^{\frac{2}{3}}$<${(\frac{1}{2})}^{\frac{1}{3}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在等差数列{an}中,a3+a4+a5=12,那么a1+a7=(  )
A.3B.4C.8D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,角A,B,C所对边分别为a,b,c,若a,b,c成等比数列,A=60°,则$\frac{bsinB}{c}$=(  )
A.$\frac{\sqrt{6}-\sqrt{2}}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{6}+\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)计算:$\frac{1}{{\sqrt{2}-1}}-{(\frac{3}{5})^0}+{(\frac{9}{4})^{-0.5}}+\root{4}{{{{(\sqrt{2}-π)}^4}}}$;
(2)已知x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=2,求$\frac{{{x^4}+{x^{-4}}-3}}{{{x^2}+{x^{-2}}-1}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.${∫}_{0}^{2π}$|cosx|dx等于(  )
A.0B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知α是第二象限的角,且cosα=-$\frac{3}{5}$,则2α是(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

同步练习册答案