精英家教网 > 高中数学 > 题目详情
13.某单位有老人20人,中年人120人,青年人100人,现采用分层抽样的方法从所有人中抽取一个容量为n的样本,已知青年人抽取的人数为10人,则n=24.

分析 先求三层的比例,然后求得青年人中抽取总人数的比例,从而求出抽取样本容量.

解答 解:由题意,因为20:120:100=1:6:5,
所以青年人中抽取总人数的$\frac{5}{1+6+5}$=$\frac{5}{12}$,
故n=10÷$\frac{5}{12}$=24.
故答案为:24.

点评 本题考查分层抽样,分层抽样的优点是:使样本具有较强的代表性,并且抽样过程中可综合选用各种抽样方法,因此分层抽样是一种实用、操作性强、应用比较广泛的抽样方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.如图,过椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>1)上顶点和右顶点分别作圆x2+y2=1的两条切线的斜率之积为-$\frac{{\sqrt{2}}}{2}$,则椭圆的离心率的取值范围是$({0,\frac{{\sqrt{2}}}{2}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若点A的坐标是(4,2),F是抛物线y2=2x的焦点,点P在抛物线上移动,为使得|PA|+|PF|取得最小值,则P点的坐标是(  )
A.(1,2)B.(2,1)C.(2,2)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设有四个命题,其中真命题的个数是(  )
①有两个平面互相平行,其余各面都是四边形的多面体一定是棱柱;
②有一个面是多边形,其余各面都是三角形的多面体一定是棱锥;
③用一个面去截棱锥,底面与截面之间的部分叫棱台;
④侧面都是长方形的棱柱叫长方体.
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某租赁公司拥有汽车100辆.当每辆车的月租金为3 00元时,可全部租出.当每辆车的月租金每增加5元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费15,未租出的车每辆每月需要维护费5元.
(1)当每辆车的月租金定为360元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.以一个圆柱的下底面为底面,并以圆柱的上底面圆心为顶点作圆锥,若所得的圆锥底面半径等于圆锥的高,则圆锥的侧面积与圆柱的侧面积之比为为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某辆汽车以x千米/小时的速度在高速公路上匀速行驶(考虑到高速公路行车安全要求60≤x≤120)时,每小时的油耗(所需要的汽油量)为$\frac{1}{5}({x-k+\frac{4500}{x}})$升,其中k为常数,且60≤k≤100.
(1)若汽车以120千米/小时的速度行驶时,每小时的油耗为11.5升,欲使每小时的油耗不超过9升,求x的取值范围;
(2)求该汽车行驶100千米的油耗的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设函数f(x)=$\left\{\begin{array}{l}{{2}^{-x},x<1}\\{lnx,x≥1}\end{array}\right.$,若函数y=f(x)-k有且只有两个零点,则实数k的取值范围是($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在平面直角坐标系xOy中,已知B,C为圆x2+y2=4上两点,点A(1,1),且AB⊥AC,则线段BC的长的取值范围为[$\sqrt{6}-\sqrt{2}$,$\sqrt{6}+\sqrt{2}$].

查看答案和解析>>

同步练习册答案