精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AD=AP,E为棱PD中点.
(1)求证:PD⊥平面ABE;
(2)若F为AB中点, ,试确定λ的值,使二面角P﹣FM﹣B的余弦值为-

【答案】
(1)证明:∵PA⊥底面ABCD,AB底面ABCD,∴PA⊥AB,

又∵底面ABCD为矩形,∴AB⊥AD,PA∩AD=A,PA平面PAD,AD平面PAD,

∴AB⊥平面PAD,又PD平面PAD,∴AB⊥PD,AD=AP,E为PD中点,∴AE⊥PD,AE∩AB=A,AE平面ABE,AB平面ABE,∴PD⊥平面ABE


(2)以A为原点,以 为x,y,z轴正方向,建立空间直角坐标系A﹣BDP,令|AB|=2,

则A(0,0,0),B(2,0,0),P(0,0,2),C(2,2,0),E(0,1,1),F(1,0,0), ,M(2λ,2λ,2﹣2λ)

设平面PFM的法向量 ,即

设平面BFM的法向量

,解得


【解析】(I)证明AB⊥平面PAD,推出AB⊥PD,AE⊥PD,AE∩AB=A,即可证明PD⊥平面ABE.(II) 以A为原点,以 为x,y,z轴正方向,建立空间直角坐标系A﹣BDP,求出相关点的坐标,平面PFM的法向量,平面BFM的法向量,利用空间向量的数量积求解即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 .

1求函数的定义域;

2判断函数的奇偶性,并说明理由;

3判断函数在区间上的单调性,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在区间上有最大值4和最小值1.设.

(1)求的值;

(2)若不等式上有解,求实数的取值范围;

(3)若有三个不同的实数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】运行如图所示的程序框图,则输出结果为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前n项和为,并且满足

(1)求数列的通项公式;

(2)若,数列的前n项和为,求

(3)在(2)的条件下,是否存在常数,使得数列为等比数列?若存在,试求出;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有4个人参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择,为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.
(1)求出4个人中恰有2个人去 参加甲游戏的概率;
(2)求这4个人中去参加甲游戏人数大于去参加乙游戏的人数的概率;
(3)用 分别表示这4个人中去参加甲、乙游戏的人数,记 ,求随机变量 的分布列与数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线 为参数)经过椭圆 为参数)的左焦点 .
(1)求 的值;
(2)设直线 与椭圆 交于 两点,求 的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面直角坐标系上一动点到点的距离是点到点的距离的2倍。

(1)求点的轨迹方程;

(2)若点与点关于点对称,求,两点间距离的最大值。

(3)若过点的直线与点的轨迹相交于两点,,则是否存在直线,使 取得最大值,若存在,求出此时的方程,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1 (t为参数,t ≠ 0),其中0 ≤ α < π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2 ,C3
(1)求C2与C3交点的直角坐标;
(2)若C1与C2相交于点A,C1与C3相交于点B,求 的最大值.

查看答案和解析>>

同步练习册答案