【题目】已知函数是定义在区间上的奇函数,且,若对于任意的m,有.
(1)判断函数的单调性(不要求证明);
(2)解不等式;
(3)若对于任意的,恒成立,求实数t的取值范围.
【答案】(1)函数在区间上是减函数;(2);(3).
【解析】
(1)设,化简得到,结合函数的单调性的定义,即可得到结论;
(2)由(1)知函数在区间上是减函数,根据,列出不等式组,即可求解不等式的解集;
(3)要使得对于任意的,都有恒成立,只需对任意的,恒成立,再结合关于a的一次函数的性质,即可求解.
(1)函数在区间上是减函数.
证明:由题意可知,对于任意的m,有,
设,则,即,
当时,,所以函数在上为单调递减函数;
当时,,所以函数在上为单调递减函数,
综上,函数在上为单调递减函数.
(2)由(1)知函数在区间上是减函数,
因为,可得,解得解得,
所以不等式的解集为.
(3)因为函数在区间上是减函数,且,
要使得对于任意的,都有恒成立,
只需对任意的,恒成立.
令,此时y可以看作a的一次函数,且在时,恒成立.
因此只需,解得解得,
所以实数t的取值范围为.
科目:高中数学 来源: 题型:
【题目】古希腊数学家阿波罗尼奧斯(约公元前262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,他证明过这样一个命题:平面内与两定点距离的比为常数k(k>0,k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.在平面直角坐标系中,设A(﹣3,0),B(3,0),动点M满足=2,则动点M的轨迹方程为()
A. (x﹣5)2+y2=16B. x2+(y﹣5)2=9
C. (x+5)2+y2=16D. x2+(y+5)2=9
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线: , : ,和两点(0,1),(-1,0),给出如下结论:
①不论为何值时, 与都互相垂直;
②当变化时, 与分别经过定点A(0,1)和B(-1,0);
③不论为何值时, 与都关于直线对称;
④如果与交于点,则的最大值是1;
其中,所有正确的结论的个数是( )
A. 1 B. 2 C. 3 D. 4.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
已知数列中,,前项和.
(1)求数列的通项公式;
(2)设数列的前项和为,是否存在实数,使得对一切正整数都成立?若存在,求出的最小值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》中盈不足章中有这样一则故事:“今有良马与驽马发长安,至齐. 齐去长安三千里. 良马初日行一百九十三里,日增一十二里;驽马初日行九十七里,日减二里.” 为了计算每天良马和驽马所走的路程之和,设计框图如下图. 若输出的 的值为 350,则判断框中可填( )
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)
某企业生产A,B两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图1;B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润和投资单位:万元).
(1)分别将A、B两种产品的利润表示为投资的函数关系式;
(2)已知该企业已筹集到18万元资金,并将全部投入A,B两种产品的生产.
①若平均投入生产两种产品,可获得多少利润?
②问:如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com