精英家教网 > 高中数学 > 题目详情

【题目】已知三棱锥S-ABC的底面是以AB为斜边的等腰直角三角形,SA=SB= SC=2,AB=2,设S、A、B、C四点均在以O为球心的某个球面上。则点O到平面ABC的距离为________________

【答案】

【解析】

试题根据三棱锥S﹣ABC的底面是以AB为斜边的等腰直角三角形,SA=SB=SC,可得S在面ABC上的射影为AB中点HSH⊥平面ABC,在面SHC内作SC的垂直平分线MOSH交于O,则OSABC的外接球球心,OHO与平面ABC的距离,由此可得结论.

解:三棱锥S﹣ABC的底面是以AB为斜边的等腰直角三角形,SA=SB=SC

∴S在面ABC上的射影为AB中点H∴SH⊥平面ABC

∴SH上任意一点到ABC的距离相等.

∵SH=CH=1,在面SHC内作SC的垂直平分线MOSH交于O,则OSABC的外接球球心.

∵SC=2

∴SM=1∠OSM=30°

∴SO=∴OH=,即为O与平面ABC的距离.

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(xk)ex.

(1)求f(x)的单调区间;

(2)求f(x)在区间[0,1]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极点与直角坐标系原点重合,极轴与x轴的正半轴重合,圆C的极坐标方程为,直线l的参数方程为为参数

,直线lx轴的交点为MN是圆C上一动点,求的最小值;

若直线l被圆C截得的弦长等于圆C的半径,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:x2=2py(p>0)的焦点为F,抛物线上一点P的纵坐标为3,且|PF|=4,过M(m,0)作抛物线C的切线MA(斜率不为0),切点为A.

(1)求抛物线C的方程;

(2)求证:以FA为直径的圆过点M.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于以为公共焦点的椭圆和双曲线,设是它们的一个公共点,分别为它们的离心率.,则的最大值为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知两个半径不相等的相交于M、N两点,且分别与内切于S、T两点。求证:OM⊥MN的充分必要条件是S、N、T三点共线。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数yfx)的定义域为R,并且满足fx+y)=fx)+fy),f)=1,当x>0时,fx)>0.

(1)求f(0)的值;

(2)判断函数的奇偶性;

(3)如果fx)+f(2+x)<2,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

设平面上向量(cosαsinα) (0°≤α360°)()

(1)试证:向量垂直;

(2)当两个向量的模相等时,求角α.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:若两个椭圆的离心率相等,则称两个椭圆是相似的.如图,椭圆与椭圆是相似的两个椭圆,并且相交于上下两个顶点,椭圆的长轴长是4,椭圆长轴长是2,点分别是椭圆的左焦点与右焦点.

1)求椭圆的方程;

2)过的直线交椭圆于点,求面积的最大值.

查看答案和解析>>

同步练习册答案