精英家教网 > 高中数学 > 题目详情
记集合A={(x,y)|x2+y2≤4}和集合B={(x,y)|x+y-2≤0,x≥0,y≥0}表示的平面区域分别为Ω1,Ω2,若在区域Ω1内任取一点M(x,y),则点M落在区域Ω2内的概率为(  )
A、
1
B、
1
π
C、
1
4
D、
π-2
分析:根据题意可知,是与面积有关的几何概率,要求M落在区域Ω2内的概率,只要求A、B所表示区域的面积,然后代入概率公式P=
区域Ω2的面积
区域Ω1的面积
,计算即可得答案.
解答:精英家教网解:根据题意可得集合A={(x,y)|x2+y2≤4}所表示的区域即为如图所表示的圆及内部的平面区域,面积为4π,
集合B={(x,y)|x+y-2≤0,x≥0,y≥0}表示的平面区域即为图中的Rt△AOB,S△AOB=
1
2
×2×2=2

根据几何概率的计算公式可得P=
2
=
1

故选A.
点评:本题主要考查了几何概率的计算公式P=
基本事件所构成区域的长度、面积、体积
试验的全部结果所构成的区域的长度、面积、体积
,而本题是与面积有关的几何概率模型.解决本题的关键是要准确求出两区域的面积.
练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年云南师大附中高考适应性月考数学试卷3(文科)(解析版) 题型:选择题

记集合A={(x,y)|x2+y2≤4}和集合B={(x,y)|x+y-2≤0,x≥0,y≥0}表示的平面区域分别为Ω1,Ω2,若在区域Ω1内任取一点M(x,y),则点M落在区域Ω2内的概率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省聊城一中高三(下)3月月考数学试卷(理科)(解析版) 题型:选择题

记集合A={(x,y)|x2+y2≤4}和集合B={(x,y)|x+y-2≤0,x≥0,y≥0}表示的平面区域分别为Ω1,Ω2,若在区域Ω1内任取一点M(x,y),则点M落在区域Ω2内的概率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2012年广东省茂名市高考数学一模试卷(文科)(解析版) 题型:选择题

记集合A={(x,y)|x2+y2≤4}和集合B={(x,y)|x+y-2≤0,x≥0,y≥0}表示的平面区域分别为Ω1,Ω2,若在区域Ω1内任取一点M(x,y),则点M落在区域Ω2内的概率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2011年北京市丰台区高考数学一模试卷(文科)(解析版) 题型:选择题

记集合A={(x,y)|x2+y2≤4}和集合B={(x,y)|x+y-2≤0,x≥0,y≥0}表示的平面区域分别为Ω1,Ω2,若在区域Ω1内任取一点M(x,y),则点M落在区域Ω2内的概率为( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案
闂備胶枪妤犲繘骞忛敓锟� 闂傚倸鍊搁崑濠囧箯閿燂拷