精英家教网 > 高中数学 > 题目详情

【题目】已知函数,曲线在点处的切线与直线垂直(其中为自然对数的底数).

1)求的解析式及单调递减区间;

2)是否存在常数,使得对于定义域内的任意恒成立,若存在,求出的值;若不存在,请说明理由.

【答案】(1,单调递减区间为.(2

【解析】试题分析:

(1)由题意可得,对函数求导可得函数的单调减区间为

(2)不等式等价于

时,令,由函数的性质可得

时,可得

综合①②可得: .

试题解析:

(I)

又由题意有:

此时,

函数的单调减区间为

(说明:减区间写为的扣分).

(II)要恒成立,

①当时, ,则要: 恒成立,

再令

内递减,

时,

内递增,

②当时, ,则要: 恒成立,

由①可知,当时,

内递增,

时, ,故

内递增,

综合①②可得:

即存在常数满足题意.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】同时抛掷甲、乙两颗骰子.

(1)求事件A“甲的点数大于乙的点数”的概率;

(2)若以抛掷甲、乙两颗骰子点数m,n作为点P的坐标(m,n),求事件B“P落在圆内”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四边形中,已知,点轴上,,且对角线

(1)求点的轨迹的方程;

(2)若点是直线上任意一点,过点作点的轨迹的两切线为切点,直线是否恒过一定点?若是,请求出这个定点的坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平潭国际“花式风筝冲浪”集训队,在平潭龙凤头海滨浴场进行集训,海滨区域的某个观测点观测到该处水深(米)是随着一天的时间呈周期性变化,某天各时刻的水深数据的近似值如下表:

0

3

6

9

12

15

18

21

24

1.5

2.4

1.5

0.6

1.4

2.4

1.6

0.6

1.5

(Ⅰ)根据表中近似数据画出散点图(坐标系在答题卷中).观察散点图,从

, ②,③

中选择一个合适的函数模型,并求出该拟合模型的函数解析式;(Ⅱ)为保证队员安全,规定在一天中的5~18时且水深不低于1.05米的时候进行训练,根据(Ⅰ) 中的选择的函数解析式,试问:这一天可以安排什么时间段组织训练,才能确保集训队员的安全。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1) 若函数f(x)=|4x-x2|+a有4个零点,求实数a的取值范围;

(2) 已知函数f(x)=x2+2mx+3m+4.

① 若函数f(x)有且仅有一个零点,求实数m的值;

若函数f(x)有两个零点且两个零点均比-1大,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a=(12),b=(-2,n),ab的夹角是45°.

(1) 求b

(2) cb同向,且aca垂直,求向量c的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆过点,离心率为,左、右焦点分别为,过的直线交椭圆于两点.

求椭圆C的方程;

的面积为时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路的山区边界的直线型公路,记两条相互垂直的公路为,山区边界曲线为,计划修建的公路为,如图所示,的两个端点,测得点的距离分别为5千米40千米,点的距离分别为20千米2.5千米,以所在的直线分别为轴,建立平面直角坐标系,假设曲线符合函数其中为常数模型

(1)的值;

(2)设公路与曲线相切于点,的横坐标为.

请写出公路长度的函数解析式,并写出其定义域;

为何值时,公路的长度最短?求出最短长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,椭圆的离心率为 是椭圆的右焦点, 的斜率为 为坐标原点.

(1)求椭圆的方程;

(2)设过点的动直线交于 两点,当面积最大时,求的方程.

查看答案和解析>>

同步练习册答案