【题目】如图,三棱锥中,平面平面,,,点,分别是棱,的中点,点是的重心.
(1)证明:平面;
(2)若与平面所成的角为,求二面角的余弦值.
【答案】(1)证明见解析;(2)
【解析】
(1)根据三角形重心性质可得,根据三角形中位线性质得,再根据线面平行判定定理得平面,平面,最后根据面面平行判定定理以及性质得结果;
(2)先根据面面垂直性质定理得平面,确定与平面所成的角,再根据条件建立空间直角坐标系,求出各点坐标,利用向量数量积得各面法向量,最后根据向量夹角公式得法向量夹角,即得二面角所成角.
(1)连接,连接并延长交于点,则点为的中点,
从而点,,分别是棱,,的中点,
∴,.
又,平面,,平面,
∴平面,平面.
又,平面,,
∴平面平面,
又平面,
∴平面.
(2)连接,∵,是的中点,∴,
∵平面平面,平面平面,
平面,平面.
连接并延长交于点,则为的中点,
连接,则,∴平面.
∴为与平面所成的角,即.
在中,设,则,,∴,.
∴,,,
∴,即,
如图建立空间直角坐标系,
则,,.
∴,,
设平面的一个法向量为,
则,可取,
又平面的一个法向量为,
则,
所以二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求直线的普通方程和曲线的直角坐标方程;
(2)设点,直线与曲线交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系.且曲线的极坐标方程为.
(1)求直线的普通方程以及曲线的直角坐标方程;
(2)若点的极坐标为,直线与曲线交于两点,求的值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校数学老师任教的班级有50名学生,某次单元测验成绩的频率分布直方图如图所示,其中成绩分组区间为,,,,,
(1)求图中的值;
(2)从成绩不低于80分的同学中随机选取3人,该3人中成绩在90分以上(含90分)的人数记为,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“干支纪年法”是中国历法自古以来就使用的纪年方法,甲、乙、丙、丁、戊、已、庚、辛、壬、癸为十天干;子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥为十二地支.“干支纪年法”是以一个天干和一个地支按上述顺序相配排列起来,天干在前,地支在后,已知2017年是丁酉年,2018年是戊戌年,2019年是已亥年,依此类推,则2080年是____________年.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面是正方形,侧面底面,,分别为,中点,.
(Ⅰ)求证:∥平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在棱上是否存在一点,使平面?若存在,指出点的位置;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,点在椭圆上,焦点为,圆O的直径为.
(1)求椭圆C及圆O的标准方程;
(2)设直线l与圆O相切于第一象限内的点P,且直线l与椭圆C交于两点.记 的面积为,证明:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com