精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱锥中,平面平面,点分别是棱的中点,点的重心.

1)证明:平面

2)若与平面所成的角为,求二面角的余弦值.

【答案】1)证明见解析;(2

【解析】

1)根据三角形重心性质可得,根据三角形中位线性质得,再根据线面平行判定定理得平面平面,最后根据面面平行判定定理以及性质得结果;

2)先根据面面垂直性质定理得平面,确定与平面所成的角,再根据条件建立空间直角坐标系,求出各点坐标,利用向量数量积得各面法向量,最后根据向量夹角公式得法向量夹角,即得二面角所成角.

1)连接,连接并延长交于点,则点的中点,

从而点分别是棱的中点,

.

平面平面

平面平面.

平面

∴平面平面

平面

平面.

2)连接,∵的中点,∴

∵平面平面,平面平面

平面平面.

连接并延长交于点,则的中点,

连接,则,∴平面.

与平面所成的角,即.

中,设,则,∴.

,即

如图建立空间直角坐标系

.

设平面的一个法向量为

,可取

又平面的一个法向量为

所以二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)设点,直线与曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系.且曲线的极坐标方程为.

1)求直线的普通方程以及曲线的直角坐标方程;

2)若点的极坐标为,直线与曲线交于两点,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校数学老师任教的班级有50名学生,某次单元测验成绩的频率分布直方图如图所示,其中成绩分组区间为

1)求图中的值;

2)从成绩不低于80分的同学中随机选取3人,该3人中成绩在90分以上(含90分)的人数记为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“干支纪年法”是中国历法自古以来就使用的纪年方法,甲、乙、丙、丁、戊、已、庚、辛、壬、癸为十天干;子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥为十二地支.“干支纪年法”是以一个天干和一个地支按上述顺序相配排列起来,天干在前,地支在后,已知2017年是丁酉年,2018年是戊戌年,2019年是已亥年,依此类推,则2080年是____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是正方形,侧面底面分别为中点,

(Ⅰ)求证:∥平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)在棱上是否存在一点,使平面?若存在,指出点的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点在椭圆上,焦点为,圆O的直径为

1)求椭圆C及圆O的标准方程;

2)设直线l与圆O相切于第一象限内的点P,且直线l与椭圆C交于两点.记 的面积为,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,平面平面,点分别是棱的中点,点的重心.

1)证明:平面

2)若与平面所成的角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求函数的极值

(Ⅱ)且方程在区间内有解求实数的取值范围.

查看答案和解析>>

同步练习册答案