精英家教网 > 高中数学 > 题目详情
19.设函数f(x)=2kax+(k-3)a-x(a>0且a≠1)是定义域为R的奇函数.
(Ⅰ)求k的值;
(Ⅱ)若f(2)<0,试判断函数f(x)的单调性,并求使不等式f(x2-x)+f(tx+4)<0恒成立的t的取值范围.

分析 (1)运用f(0)=0求解.
(2)根据单调性得出不等式x2-x>-tx-4,即x2+(t-1)x+4>0恒成立.

解答 解:(1)因为f(x)是定义域为R的奇函数,所以f(0)=0,
所以2k+(k-3)=0,即k=1,
检验知,符合条件;
(2)f(x)=2(ax-a -x) (a>0且a≠1)
因为f(2)<0,a2-$\frac{1}{{a}^{2}}$<0,又a>0且a≠1,所以0<a<1
因为y=ax单调递减,y=a -x单调递增,故f(x)在R上单调递减.
不等式化为f(x2-x)<f(-tx-4)
所以x2-x>-tx-4,即x2+(t-1)x+4>0恒成立,
所以△=(t-1)2-16<0,解得-3<t<5.

点评 本题考查了函数的性质,运用求解数值,判断单调性求解字母的范围,属于中档题,综合性较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.等差数列0,2,4,6,8,10,…按如下方法分组:(0),(2,4),(6,8,10),(12,14,16,18),…则第n组中n个数的和是(  )
A.$\frac{n(2{n}^{2}-n-1)}{2}$B.n(n2-1)C.n3-1D.$\frac{n({n}^{2}-1)}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示,四边形ABCD中,AB=AD=2,△BCD为正三角形,设∠BAD=α(α∈(0,π)).
(1)当α=$\frac{π}{2}$时,求$\overrightarrow{AC}$•$\overrightarrow{BC}$的值;
(2)[重点中学做]当α为多少时,△ABC的面积S最大?并求S的最大值.
(3)[普通中学做]记△BCD的面积S=f(α),求函数g(α)=f(α)-2sinα的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列函数中,满足“f(mn)=f(m)+f(n)”的函数是(  )
A.f(x)=xB.f(x)=x2C.f(x)=2xD.f(x)=lgx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知A={1,2,3},B={x∈N||x|=3},那么A∩B=(  )
A.3B.-3C.{-3,1,2,3}D.{3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=sin(2x-$\frac{π}{4}$)+1,x∈R.
(1)求f($\frac{π}{8}$)的值,并求函数f(x)的最小正周期;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)=x2-b|x|+c,g(x)=kx+c-2(k>0),函数h(x)=f(x)-g(x),若f(-4)=f(0),f(-2)=-2,则当函数h(x)的零点个数为2时,k的取值范围为(  )
A.$(2\sqrt{2},+∞)$B.$(4-2\sqrt{2},+∞)$C.(4,+∞)D.$(4+2\sqrt{2},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在用数学归纳法证明等式1+2+3+…+2n-1=2n2-n(n∈N*)的第(ii)步中,假设n=k(k≥1,k∈N*)时原等式成立,则当n=k+1时需要证明的等式为(  )
A.1+2+3+…+(2k-1)+[2(k+1)-1]=2k2-k+2(k+1)2-(k+1)
B.1+2+3+…+(2k-1)+[2(k+1)-1]=2(k+1)2-(k+1)
C.1+2+3+…+(2k-1)+2k+[2(k+1)-1]=2k2-k+2(k+1)2-(k+1)
D.1+2+3+…+(2k-1)+2k+[2(k+1)-1]=2(k+1)2-(k+1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在四棱锥P-ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC中点,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.
(Ⅰ)求证:BE∥平面PAD;
(Ⅱ)求证:BC⊥平面PBD;
(Ⅲ)在线段PC上是否存在一点Q,使得二面角Q-BD-P为45°?若存在,求$\frac{{|{PQ}|}}{{|{PC}|}}$的值;若不存在,请述明理由.

查看答案和解析>>

同步练习册答案