【题目】如图,在四棱锥中,平面平面,,是等边三角形,已知,.
(1)设是上的一点,证明:平面平面;
(2)求四棱锥的体积.
【答案】(1)见解析(2)
【解析】试题分析:
(1)证得AD⊥BD,而面PAD⊥面ABCD,∴BD⊥面PAD,∴面MBD⊥面PAD.
(2)作辅助线PO⊥AD,则PO为四棱锥P—ABCD的高,求得S四边形ABCD=24.∴VP—ABCD=16.
试题解析:
(1)证明:在△ABD中,∵AD=4,BD=8,AB=4,∴AD2+BD2=AB2.∴AD⊥BD.
又∵面PAD⊥面ABCD,面PAD∩面ABCD=AD,BD面ABCD,∴BD⊥面PAD.
又BD面BDM,∴面MBD⊥面PAD.
(2)解:过P作PO⊥AD,
∵面PAD⊥面ABCD,∴PO⊥面ABCD,即PO为四棱锥P—ABCD的高.
又△PAD是边长为4的等边三角形,∴PO=2.
在底面四边形ABCD中,AB∥DC,AB=2DC,∴四边形ABCD为梯形.
在Rt△ADB中,斜边AB边上的高为=,此即为梯形的高.
∴S四边形ABCD=×=24.
∴VP—ABCD=×24×2=16.
科目:高中数学 来源: 题型:
【题目】若实数x、y、m满足|x﹣m|>|y﹣m|,则称x比y远离m.
(1)若x2﹣1比3远离0,求x的取值范围;
(2)对任意两个不相等的正数a、b,证明:a3+b3比a2b+ab2远离2ab .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知几何体P﹣ABCD如图,面ABCD为矩形,面ABCD⊥面PAB,且面PAB为正三角形,若AB=2,AD=1,E、F分别为AC、BP中点,
(Ⅰ)求证:EF∥面PCD;
(Ⅱ)求直线BP与面PAC所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{an}满足Sn=2n﹣an(n∈N*).
(1)计算a1 , a2 , a3 , a4 , 并由此猜想通项公式an;
(2)用数学归纳法证明(Ⅰ)中的猜想.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“一带一路”近年来成为了百姓耳熟能详的热门词汇,对于旅游业来说,“一带一路”战略的提出,让“丝路之旅”超越了旅游产品、旅游线路的简单范畴,赋予了旅游促进跨区域融合的新理念. 而其带来的设施互通、经济合作、人员往来、文化交融更是将为相关区域旅游发展带来巨大的发展机遇.为此,旅游企业们积极拓展相关线路;各地旅游主管部门也在大力打造丝路特色旅游品牌和服务.某市旅游局为了解游客的情况,以便制定相应的策略. 在某月中随机抽取甲、乙两个景点10天的游客数,统计得到茎叶图如下:
(1)若将图中景点甲中的数据作为该景点较长一段时期内的样本数据,以每天游客人数频率作为概率.今从这段时期内任取4天,记其中游客数超过130人的天数为,求概率 ;
(2)现从上图20天的数据中任取2天的数据(甲、乙两景点中各取1天),记其中游客数不低于125且不高于135人的天数为,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 与 的夹角为120°,且| |=4,| |=2,
(1)求 ;
(2)求|3 +5 |;
(3)若向量 +k 与5 +2 垂直,求实数k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校在今年的自主招生考试成绩中随机抽取100名考生的笔试成绩,分为5组制出频率分布直方图如图所示.
(1)求的值;
(2)该校决定在成绩较好的3、4、5组用分层抽样抽取6名学生进行面试,则每组应各抽多少名学生?
(3)在(2)的前提下,已知面试有4位考官,被抽到的6名学生中有两名被指定甲考官面试,其余4名则随机分配给3位考官中的一位对其进行面试,求这4名学生分配到的考官个数的分布列和期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com