精英家教网 > 高中数学 > 题目详情

【题目】如图,在棱长为1的正方体中,点E是棱AB上的动点.

1)求证:

2)若直线与平面所成的角是45,请你确定点E的位置,并证明你的结论.

【答案】(1)见解析(2) 直线与平面所成的角是45时,点在线段AB中点处

【解析】试题分析: 要证明,只需要证明即可,建立空间直角坐标系,写出有关点的坐标,得到向量的坐标,利用向量的数量积的计算公式进行计算即可;另解:容易得到,又因为,得到平面,从而证得先利用求平面法向量的计算公式,求出平面的法向量,由已知直线与平面所成的角是,利用甲角公式得到方程,解方程即可得到点的位置

解析:以D为坐标原点,建立如图所示的坐标系,则

C(0,1,0) D1(0,1,2) A1(1,0,1),设

1)证明:

所以DA1ED1

另解: ,所以.

,所以.

所以

2)以A为原点,ABx轴、ADy轴、AA1z轴建立空间直角坐标系

所以,设,则

设平面CED1的法向量为,由可得

所以,因此平面CED1的一个法向量为

由直线与平面所成的角是45,可得

可得,解得

由于AB=1,所以直线与平面所成的角是45时,点在线段AB中点处

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】关于函数有下述四个结论:①若,则;②的图象关于点对称;③函数上单调递增;④的图象向右平移个单位长度后所得图象关于轴对称.其中所有正确结论的编号是( )

A.①②④B.①②C.③④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】庙会是我国古老的传统民俗文化活动,又称“庙市”或 “节场”.庙会大多在春节、元宵节等节日举行.庙会上有丰富多彩的文化娱乐活动,如“砸金蛋”(游玩者每次砸碎一颗金蛋,如果有奖品,则“中奖”).今年春节期间,某校甲、乙、丙、丁四位同学相约来到某庙会,每人均获得砸一颗金蛋的机会.游戏开始前,甲、乙、丙、丁四位同学对游戏中奖结果进行了预测,预测结果如下:

甲说:“我或乙能中奖”; 乙说:“丁能中奖”;

丙说:“我或乙能中奖”; 丁说:“甲不能中奖”.

游戏结束后,这四位同学中只有一位同学中奖,且只有一位同学的预测结果是正确的,则中奖的同学是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】重庆市推行“共享吉利博瑞车”服务,租用该车按行驶里程加用车时间收费,标准是“1元/公里0.2元/分钟”.刚在重庆参加工作的小刘拟租用“共享吉利博瑞车”上下班,同单位的邻居老李告诉他:“上下班往返总路程虽然只有10公里,但偶尔开车上下班总共也需花费大约1小时”,并将自己近50天的往返开车的花费时间情况统计如表:

将老李统计的各时间段频率视为相应概率,假定往返的路程不变,而且每次路上开车花费时间视为用车时间.

(1)试估计小刘每天平均支付的租车费用(每个时间段以中点时间计算);

(2)小刘认为只要上下班开车总用时不超过45分钟,租用“共享吉利博瑞车”为他该日的“最优选择”,小刘拟租用该车上下班2天,设其中有天为“最优选择”,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=|ax-2|+lnx(其中a为常数)

1)若a=0,求函数gx=的极值;

2)求函数fx)的单调区间;

3)令Fx=fx-,当a≥2时,判断函数Fx)在(01]上零点的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某中学举行的物理知识竞赛中,将三个年级参赛学生的成绩在进行整理后分成5组,绘制出如图所示的须率分布直方图,图中从左到右依次为第一、第二、第三、第四、第五小组.已知第三小组的频数是15.

1)求成绩在50-70分的频率是多少

2)求这三个年级参赛学生的总人数是多少:

3)求成绩在80-100分的学生人数是多少

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 ,直线不过原点O且不平行于坐标轴, 有两

个交点AB,线段AB的中点为M.

1)若,点K在椭圆上, 分别为椭圆的两个焦点,求的范围;

2)证明:直线的斜率与的斜率的乘积为定值;

3)若过点,射线OM交于点P,四边形能否为平行四边形?

若能,求此时的斜率;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,求函数的单调递减区间;

(Ⅱ)若时,关于的不等式恒成立,求实数的取值范围;

(Ⅲ)若数列满足 ,记的前项和为,求证: .

【答案】I;(II;(III证明见解析.

【解析】试题分析:(Ⅰ)求出,在定义域内,分别令求得的范围,可得函数增区间, 求得的范围,可得函数的减区间;(Ⅱ)当时,因为,所以显然不成立,先证明因此时, 上恒成立,再证明当时不满足题意,从而可得结果;(III)先求出等差数列的前项和为,结合(II)可得,各式相加即可得结论.

试题解析:)由,得.所以

,解得(舍去),所以函数的单调递减区间为 .

)由得,

时,因为,所以显然不成立,因此.

,则,令,得.

时, ,所以,即有.

因此时, 上恒成立.

时, 上为减函数,在上为增函数,

,不满足题意.

综上,不等式上恒成立时,实数的取值范围是.

III)证明:由知数列的等差数列,所以

所以

由()得, 上恒成立.

所以. 将以上各式左右两边分别相加,得

.因为

所以

所以.

型】解答
【/span>束】
22

【题目】已知直线, (为参数, 为倾斜角).以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的直角坐标方程为.

(Ⅰ)将曲线的直角坐标方程化为极坐标方程;

(Ⅱ)设点的直角坐标为,直线与曲线的交点为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱锥O-ABC的三条侧棱OA,OB,OC两两垂直, 为等边三角形, 内部一点,点的延长线上,且PA=PB

Ⅰ)证明:OA=OB

Ⅱ)证明:平面PAB平面POC

查看答案和解析>>

同步练习册答案