精英家教网 > 高中数学 > 题目详情
已知(
3x
+x2)
2n
的展开式的系数和比(3x-1)n的展开式的系数和大992,求(2x-
1
x
2n的展开式中:
(1)二项式系数最大的项;
(2)系数的绝对值最大的项.
分析:(1)根据(
3x
+x2)
2n
的展开式的系数和比(3x-1)n的展开式的系数和大992,对x进行赋值,令x=1,即可得到关于n的方程:22n-2n=992,求出n,根据二项式系数的性质即可求出二项式系数最大的项
(2)利用两边夹定理,设出第r+1项为系数的绝对值最大的项,即可列出关于r的不等式
C10r210-rC10(r-1)210-r+1
C10r210-rC10(r+1)210-r-1
,即可求解
解答:解:由题意知:22n-2n=992,解得n=5.
(1)(2x-
1
x
)
10
的展开式中第6项的二项式系数最大,即
T6C10(2x)5(-
1
x
)
5
 =-8064

(2)设第r+1项的系数的绝对值最大,因为Tr+1=C10(2x)10-r(-
1
x
)
r
=(-1)rC10r210-rx10-2r

C10r210-rC10(r-1)210-r+1
C10r210-rC10(r+1)210-r-1
,得
C10r≥2C10r-1
2C10r≥C10r+1

11-r≥2r
2(r+1)≥
10-r

解得
8
3
≤r≤
11
3

所以r=3,故系数的绝对值最大的项是第4项
T4=C103(2x)7(-
1
x
)
3
=-15360x4
点评:本题通过赋值法求出n,根据二项式系数的性质,同时利用两边夹定理进行求解,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知不等式x2-3x+t<0的解集为{x|1<x<m,x∈R}
(1)求t,m的值;
(2)若函数f(x)=-x2+ax+4在区间(-∞,1]上递增,求关于x的不等式loga(-mx2+3x+2-t)<0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知P={x|x2-3x+2=0},Q={x|ax-2=0},Q⊆P,求a的值.
(2)已知A={x|2≤x≤3},B={x|m+1≤x≤2m+5},B⊆A,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆x2+y2-4x+4y+8-k=0关于直线x-y-2=0对称的圆是圆C,且圆C与直线3x+4y-40=0相切,求实数k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知(
3x
+x2)
2n
的展开式的系数和比(3x-1)n的展开式的系数和大992,求(2x-
1
x
2n的展开式中:
(1)二项式系数最大的项;
(2)系数的绝对值最大的项.

查看答案和解析>>

同步练习册答案