精英家教网 > 高中数学 > 题目详情

【题目】(2015·湖北)已知数列的各项均为正数,为自然对数的底数.
(1)求函数的单调区间,并比较的大小;
(2)计算 , 由此推测计算的公式,并给出证明;
(3)令 , 数列的前项和分别记为,, 证明:.

【答案】
(1)

的单调递增区间为,单调递减区间为.

.


(2)

,

下面用数学归纳法证明②。

(1)当时,左边=右边=2,②成立。

(2)假设当时,②成立,即.当时,,有归纳假设可得.所以当时,②也成立。根据(1)(2),可知②对一切正整数都成立。


(3)


【解析】1.的定义域为.当 , 即时,单调递增;当 , 即时,单调递减。故的单调递增区间为,单调递减区间为.当时,,即.令,得,即.①
2.;;.由此推测:,②
下面用数学归纳法证明②。
(1)当时,左边=右边=2,②成立。
(2)假设当时,②成立,即.当时,,有归纳假设可得.所以当时,②也成立。根据(1)(2),可知②对一切正整数都成立。
3.
的定义,② , 算术-集合平均不等式,的定义及①得
.即.
【考点精析】本题主要考查了基本不等式和数列的定义和表示的相关知识点,需要掌握基本不等式:,(当且仅当时取到等号);变形公式:;数列中的每个数都叫这个数列的项.记作an,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n的项叫第n项(也叫通项)记作an才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(2015·四川)一辆小客车上有5个座位,其座位号为1,2,3,4,5,乘客P1P2P3P4P5的座位号分别为1,2,3,4,5,他们按照座位号顺序先后上车,乘客P1因身体原因没有坐自己号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.
(1)(I)若乘客P1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其中两种坐法,请填入余下两种坐法(将乘客就坐的座位号填入表中空格处)  

乘客

P1

P2

P3

P4

P5

座位号

3

2

1

4

5

3

2

4

5

1


(2)(Ⅱ)若乘客P1坐到了2号座位,其他乘客按规则就坐,求乘客P1坐到5号座位的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·湖南)如图,直三棱柱ABC-A1B1C1的底面是边长为2的正三角形,E,F分别是BC,CC1的中点。

(1)证明:平面AEF⊥平面B1BCC1
(2)若直线AC1与平面AA1BB1所成的角为45°,求三棱锥F-AEC的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】重庆市2013年各月的平均气温(℃)数据的茎叶图如下:

则这组数据的中位数是 ( )
A.19
B.20
C.21.5
D.23

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·湖北)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.
如图,在阳马P-ABCD中,侧棱底面,且,过棱的中点,作于点,连接
(1)证明:平面.试判断四面体是否为鳖臑,若是,写出其每个面的直角(只需写
出结论);若不是,说明理由;
(2)若面与面所成二面角的大小为 , 求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015福建)如图,AB是圆O的直径,点C是圆O上异于A,B的点,PO垂直于圆O所在的平面,且PO=OB=1.

(1)若D为线段AC的中点,求证AC平面PDO;
(2)求三棱锥P-ABC体积的最大值;
(3)若BC=,点E在线段PB上,求CE+OE的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为
(Ⅰ)求频率分布图中a的值;
(Ⅱ)估计该企业的职工对该部门评分不低于80的概率;
(Ⅲ)从评分在的受访职工中,随机抽取2人,求此2人评分都在的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加. 现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.
(1)设为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”求事件发生的概率
(2)设为选出的4人中种子选手的人数,求随机变量的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的对边分别为为锐角,问:(1)证明: B - A = ,(2)求 sin A + sin C 的取值范围
(1)(1)证明:
(2)(2)求的取值范围

查看答案和解析>>

同步练习册答案