已知函数()
(1)若在点处的切线方程为,求的解析式及单调递减区间;
(2)若在上存在极值点,求实数的取值范围.
(1),单调递减区间有;(2)
解析试题分析:(1)由题设知,,解方程组可得的值,进而确定函数的解析式及其导数的表达式,并由不等式的解得到函数据的单调递减区间.
(2)函数在上存在极值点导函数在上存在零点,且零点两侧导数值异号,因为,导函数的二次项系数为,所以要分与两种情詋进行讨论,后者为一元二次方程的分布问题.
试题解析:
(1)由已知可得
此时, 4分
由得的单调递减区间为; 7分
(2)由已知可得在上存在零点且在零点两侧值异号
⑴时,,不满足条件;
⑵时,可得在上有解且
设
①当时,满足在上有解
或此时满足
②当时,即在上有两个不同的实根
则无解
综上可得实数的取值范围为. 14分
考点:1、导数的几何意;2、导数在研究函数单调性与极值等性质中的应用;3、二次函数与一元二次方程.
科目:高中数学 来源: 题型:解答题
已知函数() =,g ()=+。
(1)求函数h ()=()-g ()的零点个数,并说明理由;
(2)设数列满足,,证明:存在常数M,使得对于任意的,都有≤ .
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,,其中m∈R.
(1)若0<m≤2,试判断函数f (x)=f1 (x)+f2 (x)的单调性,并证明你的结论;
(2)设函数 若对任意大于等于2的实数x1,总存在唯一的小于2的实数x2,使得g (x1) =" g" (x2) 成立,试确定实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
一个如图所示的不规则形铁片,其缺口边界是口宽4分米,深2分米(顶点至两端点所在直线的距离)的抛物线形的一部分,现要将其缺口边界裁剪为等腰梯形.
(1)若保持其缺口宽度不变,求裁剪后梯形缺口面积的最小值;
(2)若保持其缺口深度不变,求裁剪后梯形缺口面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
根据统计资料,某工艺品厂的日产量最多不超过20件,每日产品废品率与日产量(件)之间近似地满足关系式(日产品废品率).已知每生产一件正品可赢利2千元,而生产一件废品则亏损1千元.(该车间的日利润日正品赢利额日废品亏损额)
(1)将该车间日利润(千元)表示为日产量(件)的函数;
(2)当该车间的日产量为多少件时,日利润最大?最大日利润是几千元?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数(e为自然对数的底数).
(1)设曲线处的切线为,若与点(1,0)的距离为,求a的值;
(2)若对于任意实数恒成立,试确定的取值范围;
(3)当上是否存在极值?若存在,请求出极值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com