精英家教网 > 高中数学 > 题目详情
16.如图,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影O为AC的中点,A1O=2,AB⊥BC,AB=BC=$\sqrt{2}$点P在线段A1B上,且cos∠PAO=$\frac{2}{3}$,则直线AP与平面A1AC所成角的正弦值为$\frac{1}{3}$.

分析 取AA1的中点H,连结PO,PH,AN.则PH⊥面AA1C,△APO为直角三角形,且cos∠PAO=$\frac{2}{3}$,得AP
∠PAH为直线AP与平面A1AC所成角,sin∠PAH=$\frac{PH}{PA}=\frac{\frac{1}{2}OB}{PA}=\frac{1}{3}$.

解答 解:∵AB⊥BC,AB=BC=$\sqrt{2}$,∴AC=2,AO=1.
∵点A1在平面ABC内的射影O为AC的中点,A1O=2,AB⊥BC,
∴AO,BO,A1O互相垂直,即面ABC,面AA1C,面A1OB互相垂直,
取AA1的中点H,连结PO,PH,AN.则PH⊥面AA1C
△APO为直角三角形,且cos∠PAO=$\frac{2}{3}$,∴AP=$\frac{3}{2}$,
∠PAH为直线AP与平面A1AC所成角,sin∠PAH=$\frac{PH}{PA}=\frac{\frac{1}{2}OB}{PA}=\frac{1}{3}$.
故答案为:$\frac{1}{3}$

点评 本题考查了空间角的求解,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知直线的点斜式方程是$y-2=-\sqrt{3}(x-1)$,那么此直线的倾斜角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某单位员工按年龄分为A、B、C三个等级,其人数之比为5:4:1,现用分层抽样的方法从总体中抽取一个容量为20的样本,则从C等级组中应抽取的样本数为(  )
A.2B.4C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知平面直角坐标系xoy中,点P(1,0),曲线C的参数方程为$\left\{\begin{array}{l}x=2cosφ\\ y=sinφ\end{array}\right.$(φ为参数).以原点O为极点,x轴的正半轴为极轴建立极坐标系,倾斜角为α的直线l的极坐标方程为ρsin(α-θ)=sinα.
(1)求曲线C的普通方程和直线l的直角坐标方程;
(2)若曲线C与直线l交于M,N两点,且$|{\frac{1}{{|{PM}|}}-\frac{1}{{|{PN}|}}}|=\frac{1}{3}$,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,在四面体ABCD中,$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AC}=\overrightarrow b,\overrightarrow{AD}$=$\overrightarrow c$,点M在AB上,且AM=$\frac{2}{3}$AB,点N是CD的中点,则$\overrightarrow{MN}$=(  )
A.$\frac{1}{2}\overrightarrow a-\frac{2}{3}\overrightarrow b+\frac{1}{2}\overrightarrow c$B.$-\frac{2}{3}\overrightarrow a+\frac{1}{2}\overrightarrow b+\frac{1}{2}\overrightarrow c$C.$\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b-\frac{1}{2}\overrightarrow c$D.$-\frac{2}{3}\overrightarrow a+\frac{2}{3}\overrightarrow b-\frac{1}{2}\overrightarrow c$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在三棱锥P-ABC中,PC⊥平面ABC,∠PAC=30°,∠ACB=45°,BC=2$\sqrt{2}$,PA⊥AB.
(1)求PC的长;
(2)若点M在侧棱PB上,且$\overrightarrow{BM}=λ\overrightarrow{MP}$,当λ为何值时,二面角B-AC-M的大小为30°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知sinα=-$\sqrt{3}$cosα,则tan2α=(  )
A.$\frac{{\sqrt{3}}}{3}$B.$-\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.$-\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知a>0,x,y满足约束条件$\left\{\begin{array}{l}{x≥1}\\{x+y≤3}\\{y≥a(x-2)}\end{array}\right.$,若z=2x+y的最大值为$\frac{11}{2}$,则a=(  )
A.5B.$\frac{1}{2}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=-x3(x>0),若f(m)-$\frac{1}{2}$m2≤f(1-m)-$\frac{1}{2}$(1-m)2,则m的取值范围为[$\frac{1}{2}$,1).

查看答案和解析>>

同步练习册答案