精英家教网 > 高中数学 > 题目详情
设f(x)=x2-2x-4ln x,则f′(x)>0的解集为________.
(2,+∞)
f(x)定义域为(0,+∞),又由f′(x)=2x-2->0,解得-1<x<0或x>2,所以f′(x)>0 的解集(2,+∞).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当时,求函数的单调递增区间;
(2)记函数的图象为曲线,设点是曲线上的不同两点.如果在曲线上存在点,使得:①;②曲线在点处的切线平行于直线,则称函数存在“中值相依切线”,试问:函数是否存在“中值相依切线”,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ln ax (a≠0).
(1)求函数f(x)的单调区间及最值;
(2)求证:对于任意正整数n,均有1+(e为自然对数的底数);
(3)当a=1时,是否存在过点(1,-1)的直线与函数yf(x)的图象相切?若存在,有多少条?若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若,求函数的单调区间;
(2)若以函数图像上任意一点为切点的切线的斜率恒成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数.
(1)求的单调区间;
(2)设函数,若当时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设f(x)=,其中a为正实数.
(1)当a=时,求f(x)的极值点.
(2)若f(x)为[,]上的单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=,其导函数记为f′(x),则f(2 012)+f′(2 012)+f(-2012)-f′(-2012)=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数函数,则的最小值为(      )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知x=3是函数f(x)=aln(1+x)+x2-10x的一个极值点.
(1)求a
(2)求函数f(x)的单调区间;
(3)若直线yb与函数yf(x)的图象有3个交点,求b的取值范围.

查看答案和解析>>

同步练习册答案