精英家教网 > 高中数学 > 题目详情
8.已知AB=AE=ED=BC,CD=CE,求∠E的度数.

分析 过B作BF∥DE,使BF=DE,连结EF、AF,则BFED是平行四边形,从而BD=EF且BD∥EF,推导出△ABC≌△AEF,从而得到△ABF是等边三角形,由此能求出结果.

解答 解:过B作BF∥DE,且使BF=DE,连结EF、AF,则四边形BFED是平行四边形,
∴BD=EF,BD∥EF,∴∠CDE=∠CED,
∵AB=AE,CD=CE,
∴BD=AC=EF,∠CDE=∠CED,
∴∠ACB=∠CDE+∠CED=∠CED+∠DEF=∠AEF,
在△ABC与△AFE中,
∵BC=AE,∠ACB=∠AEF,AC=EF,∴△ABC≌△AFE,
∴AB=AF,∴△ABF是等边三角形,
设∠DCE=x,则∠CDE=∠CBF=$\frac{180°-x}{2}$,
∴∠ACB=180°-x,
∴∠ABC=180°-2∠ACB=180°-2(180°-x)=2x-180°,
∵∠ABC+∠CBF=∠ABF=60°,
∴$\frac{180°-x}{2}$+(2x-180°)=60°,
解得x=100°,
∴∠CDE=100°,∴∠CED=40°.
故答案为:40°.

点评 本题考查三角形一个内角度数的求法,是中档题,解题时要注意等腰三角形的性质、三角形内角和定理、平行四边形的判定定理及性质定理、全等三角形的判定定理和性质定合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.设$\overrightarrow{a}$≠0,$\overrightarrow{b}$≠0,$\overrightarrow{a}$≠$\overrightarrow{b}$,当$\overrightarrow{a}$和$\overrightarrow{b}$满足条件|$\overrightarrow{a}$|=|$\overrightarrow{b}$|时,使得$\overrightarrow{a}$+$\overrightarrow{b}$平分$\overrightarrow{a}$与$\overrightarrow{b}$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数y=(x+$\sqrt{{x}^{2}+1}$)2,求y′.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知方程x2+y2+($\sqrt{3}$t+1)x+ty+t2-2=0表示一个圆.
(1)求t的取值范围;
(2)若圆的直径为6,求t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.三棱锥三条侧棱两两垂直,且侧棱都相等,其外接球表面积为4π,求侧棱长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,已知直角三角形周长为48cm,一锐角交平分线分对边为3:5两部分.
(1)求直角三角形的三边长;
(2)求两直角边在斜边上的射影的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设n∈N且n≥15,A,B都是{1,2,3,…,n}真子集,A∩B=∅,且A∪B={1,2,3,…,n}.证明:A或者B中必有两个不同数的和是完全平方数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图:已知△ABC中,∠BAD=∠C,AB=4,BD=2,$\overrightarrow{BD}$=$\overrightarrow{m}$.
(1)试用$\overrightarrow{m}$表示$\overrightarrow{DC}$;
(2)过点D作DE∥AB交AC于点E.若S△ABD=3,求S△CDE

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知直线l过点A(2,0)和点B(0,-2),求直线l的一般式和斜截式方程及直线l的倾斜角.

查看答案和解析>>

同步练习册答案