精英家教网 > 高中数学 > 题目详情

【题目】下列函数中,是偶函数且在区间(0,+∞)上单调递减的函数是(
A.y=2x
B.y=
C.y=2
D.y=﹣x2

【答案】D
【解析】解:对于A,定义域为R,函数单调增,非奇非偶,不满足题意;
对于B,定义域为[0,+∞),非奇非偶,不满足题意;
对于C,定义域为[0,+∞),非奇非偶,不满足题意;
对于D,满足f(﹣x)=f(x),函数为偶函数,且在区间(0,+∞)上单调递减,满足题意,
故选D.
【考点精析】掌握函数单调性的判断方法和函数的奇偶性是解答本题的根本,需要知道单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较;偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的函数关系,下列说法中错误的是(
A.第3分时汽车的速度是40千米/时
B.第12分时汽车的速度是0千米/时
C.从第3分到第6分,汽车行驶了120千米
D.从第9分到第12分,汽车的速度从60千米/时减少到0千米/时

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知极坐标系的极点与直角坐标系的原点重合,极轴与轴的正半轴重合,圆的极坐标方程为,直线的参数方程为为参数).

(Ⅰ)若 是直线轴的交点, 是圆上一动点,求的最大值;

(Ⅱ)若直线被圆截得的弦长等于圆的半径倍,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)若,求的单调区间;()若有最大值3,求的值;()若的值域是,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数f(x)=x2|x﹣a|(a∈R).21世纪教育网
(1)判定f(x)的奇偶性,并说明理由;
(2)当a≠0时,是否存在一点M(t,0),使f(x)的图象关于点M对称,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集为实数集R,集合A={x|y= + },B={x|log2x>1}.
(1)分别求A∩B,(RB)∪A;
(2)已知集合C={x|1<x<a},若CA,求实数a的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:f(x)=lg(ax﹣bx)(a>1>b>0).
(1)求f(x)的定义域;
(2)判断f(x)在其定义域内的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若曲线处的切线与直线垂直,求的单调区间;

(2)求证: 恒成立的充要条件是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

设函数

(Ⅰ)若是函数的极值点,1和的两个不同零点,且

,求的值;

(Ⅱ)若对任意, 都存在 为自然对数的底数),使得

成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案