精英家教网 > 高中数学 > 题目详情
18.在等比数列{an}中,若公比q=4,S3=21,则该数列的通项公式an=(  )
A.4n-1B.4nC.3nD.3n-1

分析 设出等比数列的首项,结合已知列式求得首项,代入等比数列的通项公式得答案.

解答 解:设等比数列{an}的首项为a1,由公比q=4,S3=21,
得$\frac{{a}_{1}(1-{4}^{3})}{1-4}=21$,∴a1=1.
则${a}_{n}={4}^{n-1}$.
故选:A.

点评 本题考查等比数列的通项公式,考查了等比数列的前n项和,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=3•2x+$\frac{3}{{2}^{x}}$,x∈R.
(1)判断函数f(x)的奇偶性,并说明理由;
(2)利用函数单调性定义证明:f(x)在(0,+∞)上是增函数;
(3)若f(x)≥k+log2$\frac{8}{m}$•log2(2m)(m>0,k∈R)对任意的x∈R,任意的m∈(0,+∞)恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若函数y=f(x)的值域是$[\frac{1}{4},4]$,则函数y=f(x)-2$\sqrt{f(x)}$的最小值是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.对于函数y=f(x),若在其定义域内存在x0,使得x0•f(x0)=1成立,则称x0为函数f(x)的“反比点”.下列函数中具有“反比点”的是①②④.
①f(x)=-2x+2$\sqrt{2}$;  ②f(x)=sinx,x∈[0,2π];
③f(x)=x+$\frac{1}{x}$,x∈(0,+∞);④f(x)=ex;  ⑤f(x)=-2lnx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.平面向量$\vec a$与$\vec b$的夹角为60°,$\vec a=(3,\;4)$,$|{\vec b}|=1$,则$|{\vec a-2\vec b}|$=(  )
A.$\sqrt{19}$B.$2\sqrt{6}$C.$\sqrt{34}$D.$\sqrt{39}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知正方体ABCD-A1B1C1D1的棱长为5.则直线BC到平面ADD1A1的距离为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.根据如下的样本数据:
x1234567
y7.35.14.83.12.00.3-1.7
得到的回归方程为y=bx+a,则(  )
A.a>0,b>0B.a>0,b<0C.a<0,b>0D.a<0,b<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=logkx(k为常数,k>0且k≠1),且数列{f(an)}是首项为4,公差为2的等差数列.
(1)求证:数列{an}是等比数列;
(2)若bn=an+f(an),当$k=\frac{1}{{\sqrt{2}}}$时,求数列{bn}的前n项和Sn的最小值;
(3)若cn=anlgan,问是否存在实数k,使得{cn}是递增数列?若存在,求出k的范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知{an}为各项均为正整数的等差数列,a1+a27=572,且存在正整数m,使得a1,a14,am成等比数列,则所有满足条件的{an}中,公差的最大值与最小值的差为21.

查看答案和解析>>

同步练习册答案