分析 当x+$\frac{1}{y}$取最小值时,(x+$\frac{1}{y}$)2取最小值,变形可得(x+$\frac{1}{y}$)2=$\frac{4x}{y}$+$\frac{16y}{x}$由基本不等式和等号成立的条件可得.
解答 解:∵x>0,y>0,
∴当x+$\frac{1}{y}$取最小值时,(x+$\frac{1}{y}$)2取最小值,
∵(x+$\frac{1}{y}$)2=x2+$\frac{1}{{y}^{2}}$+$\frac{2x}{y}$,(x-$\frac{1}{y}$)2=$\frac{16y}{x}$,
∴x2+$\frac{1}{{y}^{2}}$=$\frac{2x}{y}$+$\frac{16y}{x}$,∴(x+$\frac{1}{y}$)2=$\frac{4x}{y}$+$\frac{16y}{x}$
≥2$\sqrt{\frac{4x}{y}•\frac{16y}{x}}$=16,∴x+$\frac{1}{y}$≥4,
当且仅当$\frac{4x}{y}$=$\frac{16y}{x}$即x=2y时取等号,
∴x2+$\frac{1}{{y}^{2}}$+$\frac{2x}{y}$=16,∴x2+$\frac{1}{{y}^{2}}$+$\frac{2•2y}{y}$=16,
∴x2+$\frac{1}{{y}^{2}}$=16-$\frac{2•2y}{y}$=12,
故答案为:12.
点评 本题考查基本不等式求最值,变形为可用基本不等式的形式是解决问题的关键,属中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -$\frac{a}{\sqrt{1-{a}^{2}}}$ | B. | $\frac{a}{\sqrt{1-{a}^{2}}}$ | C. | -$\frac{\sqrt{1-{a}^{2}}}{a}$ | D. | $\frac{\sqrt{1-{a}^{2}}}{a}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0和2001 | B. | 1和$\frac{2001}{2}$ | C. | $\frac{5}{2}$和$\frac{2003}{2}$ | D. | 5和2003 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com