分析 由题意,函数的周期为2.x∈[-1,0]时,f(x)=x,分k的奇数、偶数讨论,即可得出结论.
解答 解:由题意,函数的周期为2.x∈[-1,0]时,f(x)=x
k=2n时,x∈[k,k+1],x-k∈[0,1],f(x)=f(x-k)=x-k;
k=2n-1,x-k-1∈[-1,0],f(x)=f(x-k-1)=x-k-1;
∴f(x)=$\left\{\begin{array}{l}{x-k,k是偶数}\\{x-k-1,k是奇数}\end{array}\right.$.
故答案为:f(x)=$\left\{\begin{array}{l}{x-k,k是偶数}\\{x-k-1,k是奇数}\end{array}\right.$.
点评 本题主要考查函数奇偶性与单调性的综合应用,函数的周期性,利用函数奇偶性和周期性是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2014 | B. | 2015 | C. | 2016 | D. | 不确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com