精英家教网 > 高中数学 > 题目详情

【题目】在平行六面体中,

求证:(1)

(2)

【答案】答案见解析

【解析】分析:(1)先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得菱形ABB1A1,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后根据面面垂直判定定理得结论.

详解:

证明:(1)在平行六面体ABCD-A1B1C1D1中,ABA1B1

因为AB平面A1B1CA1B1平面A1B1C

所以AB∥平面A1B1C

(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.

又因为AA1=AB,所以四边形ABB1A1为菱形,

因此AB1A1B

又因为AB1B1C1BCB1C1

所以AB1BC

又因为A1BBC=BA1B平面A1BCBC平面A1BC

所以AB1⊥平面A1BC

因为AB1平面ABB1A1

所以平面ABB1A1⊥平面A1BC

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数

(1)用定义证明:函数是R上的增函数;

(2)化简,并求值:

(3)若关于x的方程上有解,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=.

(1)f(2)+f,f(3)+f的值;

(2)求证:f(x)+f是定值;

(3)求f(2)+f+f(3)+f+…++f的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4﹣1:几何证明选讲
如图,⊙O和⊙O′相交于A,B两点,过A作两圆的切线分别交两圆于C、D两点,连接DB并延长交⊙O于点E.证明:

(1)ACBD=ADAB;
(2)AC=AE.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)= ,则函数y=|f(x)|﹣ 的零点个数为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在空间四边形ABCD中,点EH分别是边ABAD的中点,点FG分别是边BCCD上的点,且,则下列说法正确的是________.(填写所有正确说法的序号)

EFGH平行; ②EFGH异面;

EFGH的交点M可能在直线AC上,也可能不在直线AC上;

EFGH的交点M一定在直线AC上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在斜三梭柱ABC﹣A1B1C1中,侧面AA1C1C是菱形,AC1与A1C交于点O,E是棱AB上一点,且OE∥平面BCC1B1
(1)求证:E是AB中点;
(2)若AC1⊥A1B,求证:AC1⊥BC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是抛物线 )上一点, 是抛物线的焦点, .

(1)求抛物线的方程;

(2)已知 ,过 的直线 交抛物线 两点,以 为圆心的圆 与直线 相切,试判断圆 与直线 的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的单调区间

(2)当判断函数在区间的零点个数.

查看答案和解析>>

同步练习册答案