精英家教网 > 高中数学 > 题目详情
(2010•南充一模)已知函数f(x)=πsin
1
4
x
,如果存在实数x1,x1,使x∈R时,f(x1)≤f(x)≤f(x2)恒成立,则|x1-x2|的最小值(  )
分析:利用正弦函数的周期公式可求得f(x)=πsin
1
4
x的周期T=8π,依题意|x1-x2|的最小值为
1
2
T,从而可得答案.
解答:解:∵f(x)=πsin
1
4
x,
∴其周期T=8π;
又存在实数x1,x1,使x∈R时,f(x1)≤f(x)≤f(x2)恒成立?)-π≤f(x)≤π恒成立,
∴|x1-x2|的最小值为
1
2
T=4π,
故选A.
点评:本题考查复合三角函数的单调性,着重考查正弦函数的周期公式及性质,考查综合分析与解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•南充一模)在直角坐标平面上,向量
OA
=(1,3)
OB
=(-3,1)
(O为原点)在直线l上的射影长度相等,且直线l的倾斜角为锐角,则l的斜率等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•南充一模)函数f(x)=ax-1+logax(a>0且a≠1),在[1,2]上的最大值与最小值之和是a,则a的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•南充一模)已知a,b,c都是正数,且a+2b+c=1,则
1
a
+
1
b
+
1
c
的最小值是
6+4
2
6+4
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•南充一模)已知两异面直线a,b所成的角为
π
3
,直线l分别与a,b所成的角都是θ,则θ的取值范围是
[
π
6
π
2
]
[
π
6
π
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•南充一模)已知函数f(x)图象的两条对称轴x=0和x=1,且在x∈[-1,0]上f(x)单调递增,设a=f(3),b=f(
2
)
,c=f(2),则a,b,c的大小关系是(  )

查看答案和解析>>

同步练习册答案