精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}满足a1=1,|an+1-an|=pn,n∈N*.

1若{an}是递增数列,且a1,2a2,3a3成等差数列,求p的值;

2若p=,且{a2n-1}是递增数列,{a2n}是递减数列,求数列{an}的通项公式.

【答案】12an·

【解析】

试题分析:1因为{an}是递增数列,所以an+1-an=|an+1-an|=pn.而a1=1,因此.又a1,2a2,3a3成等差数列,所以4a2=a1+3a3,因而3p2-p=0,解得p=或p=0.当p=0时,an+1=an,这与{an}是递增数列矛盾,故p=.

2由于{a2n-1}是递增数列,因而a2n+1-a2n-1>0,于是a2n+1-a2na2n-a2n-1>0.

因为<,所以|a2n+1-a2n|<|a2n-a2n-1|.

①②知,a2n-a2n-1>0,因此a2n-a2n-1.

因为{a2n}是递减数列,同理可得,a2n+1-a2n<0,故a2n+1-a2n=-.

③④可知,an+1-an=.

于是an=a1+a2-a1a3-a2an-an-1=1+

=1+··.

故数列{an}的通项公式为an·

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在正四棱锥中,已知异面直线所成的角为,给出下面三个命题:

:若,则此四棱锥的侧面积为

:若分别为的中点,则平面

:若都在球的表面上,则球的表面积是四边形面积的倍.

在下列命题中,为真命题的是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在[1,1]上的奇函数[0,1]f(x)2xln(x1)1.

(1)求函数f(x)的解析式;并判断f(x)[1,1]上的单调性(不要求证明)

(2)解不等式f(2x1)f(1x2)0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆: ()的离心率为 分别是它的左、右焦点,且存在直线,使 关于的对称点恰好是圆 )的一条直径的两个端点.

(1)求椭圆的方程;

(2)设直线与抛物线相交于两点,射线与椭圆分别相交于.试探究:是否存在数集,当且仅当时,总存在,使点在以线段为直径的圆内?若存在,求出数集;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图ABC内接于圆柱的底面圆OAB是圆O的直径AB2BC1DCEB是两条母线tanEAB.

(1)求三棱锥CABE的体积;

(2)证明:平面ACD⊥平面ADE

(3)CD上是否存在一点M使得MO∥平面ADE证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

时, 恒成立,求范围;

方程有唯一实数解,求正数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求的单调区间;

(2)若关于的不等式对一切恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当为何值时, 轴为曲线的切线;

(2)用表示中的最小值,设函数,讨论零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,

(1)若两函数图象有两个不同的公共点,求实数的取值范围;

(2)若, ,求实数的最大值.

查看答案和解析>>

同步练习册答案