【题目】关于函数 有以下四个命题:
①对于任意的,都有; ②函数是偶函数;
③若为一个非零有理数,则对任意恒成立;
④在图象上存在三个点,,,使得为等边三角形.其中正确命题的序号是__________.
【答案】①②③④
【解析】
①根据函数的对应法则,可得不论x是有理数还是无理数,均有f(f(x))=1;
②根据函数奇偶性的定义,可得f(x)是偶函数;
③根据函数的表达式,结合有理数和无理数的性质可判断;
④取x1,x2=0,x3,可得A(,0),B(0,1),C(,0),三点恰好构成等边三角形,即可判断.
①∵当x为有理数时,f(x)=1;当x为无理数时,f(x)=0,
∴当x为有理数时,f(f(x))=f(1)=1;当x为无理数时,f(f(x))=f(0)=1,
即不论x是有理数还是无理数,均有f(f(x))=1,故①正确;
②∵有理数的相反数还是有理数,无理数的相反数还是无理数,
∴对任意x∈R,都有f(﹣x)=f(x),f(x)为偶函数,故②正确;
③由于非零有理数T,若x是有理数,则x+T是有理数;
若x是无理数,则x+T是无理数,
∴根据函数的表达式,任取一个不为零的有理数T,
f(x+T)=f(x)对x∈R恒成立,故③正确;
④取x1,x2=0,x3,可得f(x1)=0,f(x2)=1,f(x3)=0,
∴A(,0),B(0,1),C(,0),恰好△ABC为等边三角形,故④正确.
故答案为:①②③④.
科目:高中数学 来源: 题型:
【题目】已知椭圆C: + =1(0<b<3)的左右焦点分别为E,F,过点F作直线交椭圆C于A,B两点,若 且
(1)求椭圆C的方程;
(2)已知点O为原点,圆D:(x﹣3)2+y2=r2(r>0)与椭圆C交于M,N两点,点P为椭圆C上一动点,若直线PM,PN与x轴分别交于点R,S,求证:|OR||OS|为常数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】要得到函数y= cosx的图象,只需将函数y= sin(2x+ )的图象上所有的点的( )
A.横坐标缩短到原来的 倍(纵坐标不变),再向左平行移动 个单位长度
B.横坐标缩短到原来的 倍(纵坐标不变),再向右平行移动 个单位长度
C.横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动 个单位长度
D.横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动 个单位长度
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: + =1(a>b>0)的离心率为 ,以原点为圆心,椭圆的短半轴长为半径的圆与直线 x﹣ y+12=0相切.
(1)求椭圆C的方程,
(2)设A(﹣4,0),过点R(3,0)作与x轴不重合的直线L交椭圆C于P,Q两点,连接AP,AQ分别交直线x= 于M,N两点,若直线MR、NR的斜率分别为k1 , k2 , 试问:k1 k2是否为定值?若是,求出该定值,若不是,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com