精英家教网 > 高中数学 > 题目详情
19.已知函数$f(x)=3si{n^2}(x+\frac{π}{6})+\frac{{\sqrt{3}}}{2}sinxcosx-\frac{1}{2}{cos^2}x$
(1)求函数f(x)在$[0,\frac{π}{2}]$上的最大值与最小值;
(2)已知$f(2{x_0})=\frac{49}{20}$,x0∈($\frac{π}{6}$,$\frac{7π}{24}$),求cos4x0的值.

分析 (1)利用二倍角和辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,求出内层函数的取值范围,结合三角函数的图象和性质,求出f(x)的取值最大和最小值;
(2)利用$f(2{x_0})=\frac{49}{20}$,x0∈($\frac{π}{6}$,$\frac{7π}{24}$),代入化简,找出与cos4x0的值关系,可求解.

解答 解:函数$f(x)=3si{n^2}(x+\frac{π}{6})+\frac{{\sqrt{3}}}{2}sinxcosx-\frac{1}{2}{cos^2}x$
化简可得:3$(\frac{1}{2}-\frac{1}{2}cos(2x+\frac{π}{3}))$+$\frac{\sqrt{3}}{4}$sin2x-$\frac{1}{2}$$(\frac{1}{2}+\frac{1}{2}cos2x)$
=$\frac{3}{2}$-$\frac{3}{2}$cos2x×$\frac{1}{2}$+$\frac{3}{2}$×$\frac{\sqrt{3}}{2}$sin2x+$\frac{\sqrt{3}}{4}$sin2x-$\frac{1}{4}$-$\frac{1}{4}$cos2x
=$\sqrt{3}$sin2x-cos2x+$\frac{5}{4}$
=2sin(2x-$\frac{π}{6}$)+$\frac{5}{4}$.
∵x∈$[0,\frac{π}{2}]$上,
∴2x-$\frac{π}{6}$∈[$-\frac{π}{6}$,$\frac{5π}{6}$].
∴sin(2x-$\frac{π}{6}$)∈[$-\frac{1}{2}$,1].
函数f(x)在$[0,\frac{π}{2}]$上的最大值为$\frac{13}{4}$,最小值为$\frac{1}{4}$.
(2)∵$f(2{x_0})=\frac{49}{20}$,即2sin(4x0-$\frac{π}{6}$)+$\frac{5}{4}$=$\frac{49}{20}$
?sin(4x0-$\frac{π}{6}$)=$\frac{3}{5}$
∵x0∈($\frac{π}{6}$,$\frac{7π}{24}$),
4x0-$\frac{π}{6}$∈[$\frac{π}{2}$,π],
∴cos(4x0-$\frac{π}{6}$)=$-\frac{4}{5}$.
cos4x0=cos[4x0-$\frac{π}{6}$)$+\frac{π}{6}$]=cos(4x0-$\frac{π}{6}$)cos$\frac{π}{6}$-sin(4x0-$\frac{π}{6}$)sin$\frac{π}{6}$=$\frac{\sqrt{3}}{2}$×$(-\frac{4}{5})$-$\frac{1}{2}×\frac{3}{5}$=$\frac{4\sqrt{3}+3}{10}$.

点评 本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,利用三角函数公式将函数进行化简是解决本题的关键.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=2log4(1+x)-log4(1+ax2)在定义域(-1,1)内是奇函数,其中a是常数.
(1)求a的值;
(2)求使不等式f(-x)≤f(x)-1成立的实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.P是椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1上一点,F1、F2分别是椭圆的左、右焦点,若∠F1PF2=$\frac{π}{3}$,则△F1PF2的面积为(  )
A.$16\sqrt{3}$B.$3\sqrt{3}$C.$9\sqrt{3}$D.$9(2+\sqrt{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知△ABC中,AB=2,AC=4,点D是边BC的中点,则$\overrightarrow{BC}$•$\overrightarrow{AD}$等于6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知圆C过点A(1,4),B(3,2),且圆心C在直线x+y-3=0上.
(1)求圆C的方程;
(2)若点P(x,y)是圆C上的动点,z=x+y,求z的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知$f(x)=|{\begin{array}{l}{ax}&x\\{-2}&{2x}\end{array}}|(a$为常数),$g(x)=\frac{{2{x^2}+1}}{x}$,且当x1,x2∈[1,4]时,总有f(x1)≤g(x2),则实数a的取值范围是$(-∞,-\frac{1}{6}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设随机变量ξ~N(3,4),若P(ξ<2a-3)=P(ξ>a+2),则实数a等于(  )
A.$\frac{7}{3}$B.$\frac{5}{3}$C.5D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.用三段论演绎推理:“复数都可以表示成实部与虚部之和的形式,因为复数z=2+3i的实部是2,所以复数z的虚部是3i”.对于这段推理,下列说法正确的是(  )
A.大前提错误导致结论错误B.小前提错误导致结论错误
C.推理形式错误导致结论错误D.推理没有问题,结论正确

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设fn(x)是等比数列1,x,x2,…,xn的各项和,则  f2016(2)等于(  )
A.22016-2B.22017-1C.22016-1D.22017-2

查看答案和解析>>

同步练习册答案