精英家教网 > 高中数学 > 题目详情

已知为函数图象上一点,为坐标原点,记直线的斜率
(Ⅰ)若函数在区间上存在极值,求实数的取值范围;
(Ⅱ)如果对任意的,有,求实数的取值范围.

(Ⅰ)(Ⅱ).

解析试题分析:(Ⅰ)根据直线的斜率公式写出函数的解析式,再利用导数解决函数极值存在时参数的取值范围.(Ⅱ)由(Ⅰ)知, 上单调递减,不妨设

函数上单调递减。再用导数研究的单调性.
试题解析:解:(Ⅰ)由题意,所以    2分
时,;当时,.所以上单调递增,在上单调递减,故处取得极大值.           3分
因为函数在区间(其中)上存在极值,所以,得
即实数的取值范围是.        6分
(Ⅱ)由(Ⅰ)知, 上单调递减,不妨设,则

函数上单调递减。     8分
,则上恒成立,所以上恒成立,所以,故 .      13分
考点:1、直线斜率公式;2、导数在研究函数性质中的应用国.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y+10(x-6)2,其中3<x<6,a为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.
(1)求a的值;
(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设直线是曲线的一条切线,.
(1)求切点坐标及的值;
(2)当时,存在,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

学校操场边有一条小沟,沟沿是两条长150米的平行线段,沟宽为2米,,与沟沿垂直的平面与沟的交线是一段抛物线,抛物线的顶点为,对称轴与地面垂直,沟深2米,沟中水深1米.
(Ⅰ)求水面宽;
(Ⅱ)如图1所示形状的几何体称为柱体,已知柱体的体积为底面积乘以高,求沟中的水有多少立方米?

(Ⅲ)现在学校要把这条水沟改挖(不准填土)成截面为等腰梯形的沟,使沟的底面与地面平行,沟深不变,两腰分别与抛物线相切(如图2),问改挖后的沟底宽为多少米时,所挖的土最少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数.
(Ⅰ)求函数单调递增区间;
(Ⅱ)当时,求函数的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若,则满足什么条件时,曲线处总有相同的切线?
(2)当时,求函数的单调减区间;
(3)当时,若对任意的恒成立,求的取值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)证明函数在区间上单调递减;
(2)若不等式对任意的都成立,(其中是自然对数的底数),求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为常数),其图象是曲线
(1)当时,求函数的单调减区间;
(2)设函数的导函数为,若存在唯一的实数,使得同时成立,求实数的取值范围;
(3)已知点为曲线上的动点,在点处作曲线的切线与曲线交于另一点,在点处作曲线的切线,设切线的斜率分别为.问:是否存在常数,使得?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求函数上的最大值;
(2)令,若在区间上不单调,求的取值范围;
(3)当时,函数的图象与轴交于两点,且,又的导函数.若正常数满足条件.证明:.

查看答案和解析>>

同步练习册答案