精英家教网 > 高中数学 > 题目详情

已知函数, .

(1)若, 函数 在其定义域是增函数,求的取值范围;

(2)在(1)的结论下,设函数的最小值;

(3)设函数的图象与函数的图象交于点,过线段的中点轴的垂线分别交于点,问是否存在点,使处的切线与处的切线平行?若存在,求出的横坐标;若不存在,请说明理由.

 

【答案】

(1);(2)当时,的最小值为;当时,的最小值为;当时,的最小值为;(3)不存在点.

【解析】

试题分析:本题主要考查导数的运算,利用导数研究函数的单调性、不等式基础知识,考查函数思想、构造函数思想、分类讨论思想,考查综合分析和解决问题的能力.第一问,利用导数研究函数的单调性,转化为恒成立问题,再转化为求函数最值问题;第二问,利用配方法求最值,讨论对称轴与区间端点的大小,本问突出体现了分类讨论思想的运用;第三问,把问题坐标化,用反证法证明,利用切线平行,列出方程,构造函数,判断单调性求最值,得出矛盾.

试题解析:(1)依题意:上是增函数,

恒成立,        2分

,则.

的取值范围为                    4分

(2)设,则函数化为

∴当,即时,函数上为增函数.

时,;                      6分

,即时,当时,

,即时,函数上是减函数.

时,                        8分

综上所述,当时,的最小值为.

时,的最小值为.

时,的最小值为.               9分

(3)设点的坐标是则点的横坐标为

在点处的切线斜率为

在点处的切线斜率为        10分

假设在点处的切线与在点处的切线平行,则

                       11分

,则  ①                12分

,则

,∴,所以上单调递增,

,则.

这与①矛盾,假设不成立.故C1在点M处的切线与C2在点N处的切线不平行.                                  14分

考点:1.函数的单调性;2.基本不等式;3.配方法求最值;4.反证法.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1-x2
+
x2-1
的定义域是(  )
A、[-1,1]
B、{-1,1}
C、(-1,1)
D、(-∞,-1]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(1-b)x+b,x<0
(b-3)x2+2,x≥0
,在(-∞,+∞)上是减函数,则实数b的范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1-
a
x
,g(x)=
lnx
x
,且函数f(x)在点(1,f(1))处的切线与直线x+y+3=0垂直.
(I)求a的值;
(II)如果当x∈(0,1)时,t•g(x)≤f(x)恒成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=
1
x+1
的定义域为集合A,集合B=(-2,+∞),则集合(CRA)∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

请考生注意:重点高中学生做(2)(3).一般高中学生只做(1)(2).
已知函数f(x)=(1-a)x-lnx-
a
x
-1(a∈R)

(1)若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;
(2)当a>0时,讨论f(x)的单调性;
(3)当a=
3
4
时,设g(x)=x2-bx+1,若对任意x1∈(0,2],都存在x2∈(0,2],都存在x2∈[1,2]使f(x1)≤g(x2),求实数b的取值范围.

查看答案和解析>>

同步练习册答案