精英家教网 > 高中数学 > 题目详情
9.在平面直角坐标系中,点P为椭圆$\frac{{x}^{2}}{3}$+y2=1上的一个动点,则点P到直线x-y+6=0的最大距离为4$\sqrt{2}$.

分析 由设P($\sqrt{3}$cosx,sinx),则点P到直线x-y+6=0的距离d=$\frac{丨\sqrt{3}cosθ-sinθ+6丨}{\sqrt{{1}^{2}+(-1)^{2}}}$=$\frac{丨2cos(\frac{π}{6}+θ)+6丨}{\sqrt{2}}$,利用余弦定理的性质,即可求得点P到直线x-y+6=0的最大距离.

解答 解:由题意可知:设P($\sqrt{3}$cosx,sinx),则点P到直线x-y+6=0的距离d=$\frac{丨\sqrt{3}cosθ-sinθ+6丨}{\sqrt{{1}^{2}+(-1)^{2}}}$=$\frac{丨2cos(\frac{π}{6}+θ)+6丨}{\sqrt{2}}$,
由-1≤cos(θ+$\frac{π}{6}$)≤1,则4≤2cos(θ+$\frac{π}{6}$)+6≤8,
∴2$\sqrt{2}$≤d≤4$\sqrt{2}$,
∴点P到直线x-y+6=0的最大距离为4$\sqrt{2}$,
故答案为:4$\sqrt{2}$.

点评 本题考查椭圆的参数方程,点到直线的距离公式,余弦函数的最值,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.下列命题中为真命题的是(  )
A.命题“若$\overrightarrow{a}$∥$\overrightarrow{c}$且$\overrightarrow{b}$∥$\overrightarrow{c}$,则$\overrightarrow{a}$∥$\overrightarrow{b}$”
B.命题“若x>2015,则x>0”的逆命题
C.命题“若xy=0,则x=0或y=0”的否命题
D.命题“若x2≥1,则x≥1”的逆否命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.三棱锥SABC及其三视图中的正视图和侧视图如图所示,则棱SB的长为(  )
A.4$\sqrt{2}$B.$\sqrt{19}$C.$\sqrt{20}$D.$4\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知椭圆:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$和圆:${x^2}+{y^2}={(\frac{b}{2}+c)^2}({c^2}={a^2}-{b^2})$有四个不同的公共点,则椭圆的离心率的取值范围是(  )
A.$(\frac{{\sqrt{5}}}{5},\frac{3}{5})$B.$(\frac{{\sqrt{2}}}{5},\frac{{\sqrt{5}}}{5})$C.$(\frac{{\sqrt{2}}}{5},\frac{3}{5})$D.$(0,\frac{{\sqrt{5}}}{5})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在棱锥P-ABC中,侧棱PA、PB、PC两两垂直,Q为底面△ABC内一点,若点Q到三个侧面的距离分别为3、4、5,则以线段PQ为直径的球的体积为(  )
A.$\frac{125π}{6}$B.$\frac{{125\sqrt{2}π}}{3}$C.$\frac{50π}{3}$D.$\frac{25π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{1}{2}$ax2-(a+1)x+lnx(a>0),x=$\frac{1}{4}$是函数的一个极值点.
(1)求实数a的值;
(2))定义:定义域为M的函数y=h(x)在点(x0,f(x0))处的切线方程为l:y=g(x),若$\frac{h(x)-g(x)}{{x-{x_0}}}$>0在M内恒成立,则称P为函数y=h(x)的“类对称点”.问:函数y=f(x)是否存在“类对称点”,若存在,请至少求出一个“类对称点”,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知F1,F2为双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{16}$=1(a>0)的左右焦点,点A在双曲线的右支上,点P(7,2)是平面内一定点,若对任意实数m,直线4x+3y+m=0与双曲线C至多有一个公共点,则|AP|+|AF2|的最小值为(  )
A.2$\sqrt{37}$-6B.10-3$\sqrt{5}$C.8-$\sqrt{37}$D.2$\sqrt{5}$-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.根据下列条件,求双曲线的标准方程.
(1)与已知双曲线x2-4y2=4有共同渐近线且经过点(2,2);
(2)渐近线方程为y=±$\frac{1}{2}$x,焦距为10;
(3)经过两点P(-3,2$\sqrt{7}$)和Q(-6$\sqrt{2}$,-7);
(4)双曲线中心在原点,焦点在坐标轴上,离心率为$\sqrt{2}$,且过点(4,-$\sqrt{10}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.{an}是等差数列,{bn}是等比数列,Tn是{bn}的前n项和,a1=b1=1,且满足$\sqrt{{a_2}+2}+\sqrt{{b_2}-2}=2\sqrt{2}$,当a2+b2取最小值时,
(1)求Tn
(2)Sn是{|an|}的前n项和,求Sn

查看答案和解析>>

同步练习册答案