精英家教网 > 高中数学 > 题目详情
如图,平面ABDE⊥平面ABC,△ABC是等腰直角三角形,AC=BC=4,四边形ABDE是直角梯形,BD∥AE,BD⊥BA,BD=AE=2,O,M分别为CE,AB的中点.
(Ⅰ)求证:OD∥平面ABC;
(Ⅱ)求直线CD和平面ODM所成角的正弦值;
(Ⅲ)能否在EM上找一点N,使得ON⊥平面ABDE?若能,请指出点N的位置,并加以证明;若不能,请说明理由。
(Ⅰ)证明:取AC中点F,连接OF,FB,
∵F是AC的中点,O为CE的中点,
∴OF∥EA且OF=EA,
又BD∥AE且BD=AE,
∴OF∥DB,OF=DB,
∴四边形BDOF是平行四边形, 
∴OD∥FB,
又∵FB平面ABC,OD平面ABC,
∴OD∥面ABC。
(Ⅱ)解:∵DB⊥BA,又面ABDE⊥面ABC,
面ABDE∩面ABC=AB,DB面ABDE,
∴DB⊥面ABC,
∵BD∥AE,
∴EA⊥面ABC,
如图,以C为原点,分别以CA,CB为x,y轴,
以过点C且与平面ABC垂直的直线为z轴,建立空间直角坐标系,
∵AC=BC=4,
∴各点坐标为:C(0,0,0),A(4,0,0),B(0,4,0),
D(0,4,2),E(4,0,4),
∴O(2,0,2),M(2,2,0),
设平面ODM的法向量n=(x,y,z),
则由可得
令x=2,得y=1,z=1,
n=(2,1,1),
设直线CD和平面ODM所成角为θ,

∴直线CD和平面ODM所成角的正弦值为
(Ⅲ)解:当N是EM中点时,ON⊥平面ABDE,
取EM中点N,连接ON,CM,
∵AC=BC,M为AB中点,
∴CM⊥AB,
又∵面ABDE⊥面ABC,面ABDE∩面ABC=AB, CM面ABC,
∴CM⊥平面ABDE,
∵N是EM中点,O为CE中点,
∴ON∥CM, 
∴ON⊥平面ABDE.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,平面ABDE⊥平面ABC,△ABC是等腰直角三角形,AC=BC=4,四边形ABDE是直角梯形,BD∥AE,BD⊥BA,BD=
12
AE=2
,O、M分别为CE、AB的中点,求直线CD和平面ODM所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,平面ABDE⊥平面ABC,△ABC是等腰直角三角形,AC=BC=4,四边形ABDE是直角梯形,BD∥AE,BD⊥BA,BD=
12
AE=2
,O、M分别为CE、AB的中点.
(Ⅰ)求证:OD∥平面ABC;
(Ⅱ)求直线CD和平面ODM所成角的正弦值;
(Ⅲ)能否在EM上找一点N,使得ON⊥平面ABDE?若能,请指出点N的位置,并加以证明;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,平面ABDE⊥平面ABC,△ABC是等腰直角三角形,AC=BC=4,四边形ABDE是直角梯形,BD∥AE,BD⊥BA,BD=
12
AE=2
,O、M分别为CE、AB的中点.
(1)求异面直线AB与CE所成角的大小.
(2)求直线CD和平面ODM所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,平面ABDE⊥平面ABC,△ABC是等腰直角三角形,AC=BC=4,四边形ABDE是直角梯形,BD∥AE,BD⊥BA,BD=
12
AE=2
,O,M,N分别为CE,AB,EM的中点.
(1)求证:OD∥平面ABC;
(2)求证:ON⊥平面ABDE;
(3)求直线CD与平面ODM所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,平面ABDE⊥平面ABC,△ABC是等腰直角三角形,AC=BC=4,四边形ABDE是直角梯形,BD∥AE,BD⊥BA,BD=
12
AE=2,O、M分别为CE、AB的中点.
(1)求证:OD∥平面ABC;
(2)在棱EM上是否存在N,使ON⊥平面ABDE?若能,请指出点N的位置,并加以证明;若不能,请说明理由;
(3)求二面角O-ED-M的大小.

查看答案和解析>>

同步练习册答案