精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥PABCD中,PA⊥平面ABCD,底面ABCD为直角梯形,∠ABC=∠BAD90°ADBCEF分别为棱ABPC上的点.

1)求证:平面AFD⊥平面PAB

2)若点E满足,当F满足什么条件时,EF∥平面PAD?请给出证明.

【答案】1)见解析(2)当时,EF∥平面PAD.见解析

【解析】

1)只要证AD⊥平面PAB即可,已有ADAB,再由已知线面垂直又得PAAD,从而可证结论成立;

2)过EEMADCD于点M,只要再有,就有都与平面平行,从而得EF∥平面PAD.根据平行线的性质应该有即可上面所说的平行.

1)证明:∵∠BAD90°,∴ADAB

PA⊥平面ABCD,∴PAAD.∴AD⊥平面PAB

又∵AD平面AFD

∴平面AFD⊥平面PAB

2)过EEMADCD于点M

BC∥,,∴

MMFPD,交PCF,则

EFPDEM平面PADPD平面PAD

EM∥平面PAD

MFPDMF平面PADPD平面PAD

MF∥平面PAD

∴平面EFM∥平面PAD,又EF平面EFM

EF∥平面PAD

∴当时,EF∥平面PAD

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中,上一点,,且,则__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

已知抛物线C的方程Cy2="2" p xp0)过点A1-2.

I)求抛物线C的方程,并求其准线方程;

II)是否存在平行于OAO为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OAl的距离等于?若存在,求出直线l的方程;若不存在,说明理由。

【答案】I)抛物线C的方程为,其准线方程为II)符合题意的直线l 存在,其方程为2x+y-1 =0.

【解析】

试题()求抛物线标准方程,一般利用待定系数法,只需一个独立条件确定p的值:(-222p·1,所以p2.再由抛物线方程确定其准线方程:,()由题意设,先由直线OA的距离等于根据两条平行线距离公式得:解得,再根据直线与抛物线C有公共点确定

试题解析:解 (1)将(1,-2)代入y22px,得(-222p·1

所以p2

故所求的抛物线C的方程为

其准线方程为

2)假设存在符合题意的直线

其方程为

因为直线与抛物线C有公共点,

所以Δ48t≥0,解得

另一方面,由直线OA的距离

可得,解得

因为-1[,+),1∈[,+),

所以符合题意的直线存在,其方程为

考点:抛物线方程,直线与抛物线位置关系

【名师点睛】求抛物线的标准方程的方法及流程

1)方法:求抛物线的标准方程常用待定系数法,因为未知数只有p,所以只需一个条件确定p值即可.

2)流程:因为抛物线方程有四种标准形式,因此求抛物线方程时,需先定位,再定量.

提醒:求标准方程要先确定形式,必要时要进行分类讨论,标准方程有时可设为y2=mxx2=mym≠0).

型】解答
束】
22

【题目】已知椭圆的左右焦点与其短轴的一个端点是正三角形的三个顶点,点在椭圆上.

(1)求椭圆的方程;

(2)直线过椭圆左焦点交椭圆于为椭圆短轴的上顶点,当直线时,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在等腰直角中,,点在线段.

(Ⅰ) ,求的长;

)若点在线段上,且,问:当取何值时,的面积最小?并求出面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)若直线与曲线的交点的横坐标为,且,求整数所有可能的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,EFMN分别是BC的中点.

1)求证:平面平面NEF;

2)求二面角的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fxR上的奇函数.

1)求ab的值;

2)判断并证明fx)的单调性;

3)若对任意实数x,不等式f[fx)﹣m]0恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019422日是第50个世界地球日,半个世纪以来,这一呼吁热爱地球环境的运动已经演变为席卷全球的绿色风暴,让越来越多的人认识到保护环境、珍惜自然对人类未来的重要性.今年,自然资源部地球日的主题是“珍爱美丽地球,守护自然资源”.某中学举办了以珍爱美地球,守护自然资源为主题的知识竞赛.赛后从该校高一和高二年级的参赛者中随机抽取100人,将他们的竞赛成绩分为7组:[3040),[4050),[5060),[6070),[7080),[8090),[90100],并得到如下频率分布表:

现规定,“竞赛成绩≥80分”为“优秀”“竞赛成绩<80分”为“非优秀”

)请将下面的2×2列联表补充完整;

优秀

非优秀

合计

高一

50

高二

15

合计

100

)判断是否有99%的把握认为竞赛成绩与年级有关

附:独立性检验界值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,点,直线.

(1)求与圆相切,且与直线垂直的直线方程;

2)在直线上(为坐标原点),存在定点(不同于点),满足:对于圆上的任一点,都有为一常数,试求出所有满足条件的点的坐标.

查看答案和解析>>

同步练习册答案