【题目】已知函数, .
(Ⅰ)求函数的极值;
(Ⅱ)当时,若存在实数使得不等式恒成立,求实数的取值范围.
【答案】(I)见解析;(II).
【解析】试题分析:(1)对函数求导,对分情况讨论,从单调性得出是否有极值,且求出极值;(2)当时,由(1)知有极小值 ,只有当时才符合题意,所以,求出函数 在处的切线方程 ,证明 ,得出。
试题解析:(1)由题意得, ,∴,
①当时,则,此时无极值;
②当时,令,则;令,则;
∴在上递减,在上递增;
∴有极小值,无极大值;
(2)当时,由(1)知, 在上递减,在上递增,且有极小值.
①当时, ,∴,
此时,不存在实数, ,使得不等式恒成立;
②当时, ,
在处的切线方程为,
令, ,
则, ,
令 , ,
则,令,则;令,则;
∴ ,∴,
∴,
当, 时,不等式恒成立,
∴符合题意. 由①,②得实数的取值范围为.
科目:高中数学 来源: 题型:
【题目】某厂需要确定加工某大型零件所花费的时间,连续4天做了4次统计,得到的数据如下:
零件的个数(个) | 2 | 3 | 4 | 5 |
加工的时间(小时) | 2.5 | 3 | 4 | 5.5 |
(1)在直角坐标系中画出以上数据的散点图,求出关于的回归方程,并在坐标系中画出回归直线;
(2)试预测加工10个零件需要多少时间?
参考公式:两个具有线性关系的变量的一组数据:,
其回归方程为,其中
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设某物体一天中的温度是时间的函数,已知,其中温度的单位是,时间的单位是小时,规定中午12:00相应的,中午12:00以后相应的取正数,中午12:00以前相应的取负数(例如早上8:00相应的,下午16:00相应的),若测得该物体在中午12:00的温度为,在下午13:00的温度为,且已知该物体的温度在早上8:00与下午16:00有相同的变化率.
(1)求该物体的温度关于时间的函数关系式;
(2)该物体在上午10:00至下午14:00这段时间中(包括端点)何时温度最高?最高温度是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地高中年级学生某次身体素质体能测试的原始成绩采用百分制,已知这些学生的原始成绩均分布在内,发布成绩使用等级制,各等级划分标准见下表,并规定: 三级为合格, 级为不合格
为了了解该地高中年级学生身体素质情况,从中抽取了名学生的原始成绩作为样本进行统计,按照分组作出频率分布直方图如图所示,样本中分数在分及以上的所有数据的茎叶图如图所示.
(Ⅰ) 求及频率分布直方图中的值;
(Ⅱ) 根据统计思想方法,以事件发生的频率作为相应事件发生的概率,若在该地高中学生中任选人,求至少有人成绩是合格等级的概率;
(Ⅲ)上述容量为的样本中,从两个等级的学生中随机抽取了名学生进行调研,记为所抽取的名学生中成绩为等级的人数,求随机变量的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某企业生产的某种产品中抽取100件,测量这些产品的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间内的频率之比为.
(1)求这些产品质量指标值落在区间内的频率;
(2)若将频率视为概率,从该企业生产的这种产品中随机抽取3件,记这3件产品中质量指标值位于区间内的产品件数为,求的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在原点,焦点在轴上的椭圆,离心率,且椭圆过点.
(1)求椭圆的方程;
(2)设椭圆左、右焦点分别为,过的直线与椭圆交于不同的两点,则的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数, ).以原点为极点,以轴正半轴为极轴,与直角坐标系取相同的长度单位,建立极坐标系.设曲线的极坐标方程为.
(Ⅰ)设为曲线上任意一点,求的取值范围;
(Ⅱ)若直线与曲线交于两点, ,求的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com