精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)若,求曲线处的切线方程;

2)若对任意 恒成立,求实数的取值范围.

【答案】(1);(2).

【解析】试题分析:(1)先根据导数几何意义得切线斜率为,再根据点斜式写切线方程(2)先将不等式恒成立转化为函数最值: ,再利用导数求函数最小值为;根据导函数零点 ,分类讨论,确定导函数符号,进而确定单调性,最后由单调性确定最值取法,解对应不等式可得实数的取值范围.

试题解析:(1)依题意, ,故

,故所求切线方程为,即

2)令,故函数的定义域为

变化时, 的变化情况如下表:

单调减

单调增

单调减

因为 ,所以时,函数的最小值为

因为 因为,令得,

(ⅰ)当,即时,在,所以函数上单调递增,所以函数.由得, ,所以

(ⅱ)当,即, ,在

所以函数上单调递增,在上单调递减,所以,由得, ,所以

综上所述, 的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的电网销售电价表如下:

高峰时间段用电价格表

低谷时间段用电价格表

高峰月用

电量(单

位:千瓦时)

高峰电价

(单位:元/

千瓦时)

低谷月用

电量(单位:

千瓦时)

低谷电价

(单位:元/

千瓦时)

50及以下

的部分

0.568

50及以下

的部分

0.288

超过 50 至

200 的部分

0.598

超过 50 至

200 的部分

0.318

超过200

的部分

0.668

超过 200

的部分

0.388

若某家庭5月份的高峰时间段用电量为 200 千瓦时,低谷时间段用电量为 100 千瓦时,则按这种计费方式该家庭本月应付的电费为____________元.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x.

(Ⅰ)当x∈[﹣1,1]时,求函数y=[f(x)]2﹣2af(x)+3的最小值g(a);

(Ⅱ)在(Ⅰ)的条件下,是否存在实数m>n>3,使得g(x)的定义域为[n,m],值域为[n2,m2]?若存在,求出m、n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)时,若,且对任意的,都存在,使得成立,求实数a的取值范围;

(2)时,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】信息科技的进步和互联网商业模式的兴起,全方位地改变了大家金融消费的习惯和金融交易模式,现在银行的大部分业务都可以通过智能终端设备完成,多家银行职员人数在悄然减少.某银行现有职员320人,平均每人每年可创利20万元.据评估,在经营条件不变的前提下,每裁员1人,则留岗职员每人每年多创利0.2万元,但银行需付下岗职员每人每年6万元的生活费,并且该银行正常运转所需人数不得小于现有职员的,为使裁员后获得的经济效益最大,该银行应裁员多少人?此时银行所获得的最大经济效益是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 是抛物线上两点,且两点横坐标之和为3.

(1)求直线的斜率;

(2)若直线,直线与抛物线相切于点,且,求方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若存在实数 ,使 成立,则称的不动点.

(1)当时,求的不动点;

(2)若对于任意的实数 函数 恒有两个相异的不动点,求实数的取值范围;

(3)在(2)的条件下,若的图象上 两点的横坐标是函数 的不动点,且直线 是线段的垂直平分线,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若定义域为的函数同时满足以下三条:

(ⅰ)对任意的总有(ⅱ)

(ⅲ)若则有就称为“A函数”,下列定义在的函数中为“A函数”的有_______________

;②

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数且点(4,2)在函数f(x)的图象上.

(1)求函数f(x)的解析式,并在图中的直角坐标系中画出函数f(x)的图象;

(2)求不等式f(x)<1的解集;

(3)若方程f(x)-2m=0有两个不相等的实数根,求实数m的取值范围.

查看答案和解析>>

同步练习册答案