【题目】函数f(x)=Asin(ωx+φ)满足:f( +x)=﹣f( ﹣x),且f( +x)=f( ﹣x),则ω的一个可能取值是( )
A.2
B.3
C.4
D.5
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2+ +5(常数a,b∈R)满足f(1)+f(﹣1)=14.
(1)求出a的值,并就常数b的不同取值讨论函数f(x)奇偶性;
(2)若f(x)在区间(﹣∞,﹣ )上单调递减,求b的最小值;
(3)在(2)的条件下,当b取最小值时,证明:f(x)恰有一个零点q且存在递增的正整数数列{an},使得 =q +q +q +…+q +…成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)是定义在R上的奇函数,当x>0时,f(x)=x﹣1,则不等式f(x)<0的解集为( )
A.(﹣∞,﹣1)∪(0,1)
B.(﹣∞,﹣1)∪(1,+∞)
C.(﹣1,1)
D.(﹣1,0)∪(1,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为 (为参数).
(I)写出直线的一般方程与曲线的直角坐标方程,并判断它们的位置关系;
(II)将曲线向左平移个单位长度,向上平移个单位长度,得到曲线,设曲线经过伸缩变换得到曲线,设曲线上任一点为,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E: =1(a>b>0)的焦距为2 ,其上下顶点分别为C1 , C2 , 点A(1,0),B(3,2),AC1⊥AC2 .
(1)求椭圆E的方程及离心率;
(2)点P的坐标为(m,n)(m≠3),过点A任意作直线l与椭圆E相交于点M,N两点,设直线MB,BP,NB的斜率依次成等差数列,探究m,n之间是否满足某种数量关系,若是,请给出m,n的关系式,并证明;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某幼儿园为训练孩子的数字运算能力,在一个盒子里装有标号为1,2,3,4,5的卡片各2张,让孩子从盒子里任取3张卡片,按卡片上最大数字的9倍计分,每张卡片被取出的可能性都相等,用X表示取出的3张卡片上的最大数字
(1)求取出的3张卡片上的数字互不相同的概率;
(2)求随机变量x的分布列;
(3)若孩子取出的卡片的计分超过30分,就得到奖励,求孩子得到奖励的概率
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等差数列{an}的公差为d,关于x的不等式 x2+(a1﹣ )x+c≥0的解集是[0,22],则使得数列{an}的前n项和大于零的最大的正整数n的值是( )
A.11
B.12
C.13
D.不能确定
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com