精英家教网 > 高中数学 > 题目详情
6.设I=R,集合A={x|x2-2x<0},B={x|x2-4x+3≤0},求
(1)A∩B;
(2)A∪B;
(3)(∁IA)∪(∁IB).

分析 (1)求出A与B中不等式的解集确定出A与B,找出两集合的交集即可;
(2)找出两集合的并集即可;
(3)根据全集I,求出A的补集与B的补集,找出两补集的并集即可.

解答 解:(1)由A中不等式变形得:x(x-2)<0,
解得:0<x<2,即A={x|0<x<2},
由B中不等式变形得:(x-1)(x-3)≤0,
解得:1≤x≤3,即B={x|1≤x≤3},
则A∩B={x|1≤x<2};
(2)A∪B={x|0<x≤3};
(3)∵∁IA={x|x≤0或x≥2},∁IB={x|x<1或x>3},
∴(∁IA)∪(∁IB)={x|x<1或x≥2}.

点评 此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.函数y=4x-2x的单调递增区间是(  )
A.[$\frac{1}{2}$,+∞)B.[-1,+∞)C.($-∞,\frac{1}{2}$]D.(-∞,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若实数x,y满足约束条件$\left\{\begin{array}{l}y≤2-x\\ x-y≤2\\ 2x-y+2≥0\end{array}\right.$,则z=x-2y的最小值为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,a,b,c分别为A,B,C所对的边,且(a+c)(a-c)=b(b+c),则角A=(  )
A.45°B.60°C.90°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知六棱柱 A BCD EF-A1 B1C1D1 E1F1的底面是正六边形,侧棱与底面垂直,若该六棱柱的侧面积为48,底面积为$12\sqrt{3}$,则该六棱柱外接球的表面积等于32π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知等比数列的前n项和为Sn,且a1+a3=$\frac{5}{2},{a_2}+{a_4}=\frac{5}{4}$,则$\frac{S_n}{a_n}$=2n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列四个数列中,是递增数列的是(  )
A.$\left\{{\frac{n+1}{n}}\right\}$B.$\left\{{\frac{{{{({-1})}^n}}}{n}}\right\}$C.$\left\{{cos\frac{π}{n}}\right\}$D.$\left\{{sin\frac{π}{n}}\right\}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知 f(x)=$\left\{\begin{array}{l}{\frac{{x}^{2}+5x}{6},0≤x≤3}\\{10-2x,3<x≤5}\end{array}\right.$,若存在实数m,n∈[0,5],且m<n使得f(x)在区间[m,n]上的值域为[m,n],则这样的实数对(m,n)共有(  )
A.1对B.2对C.3对D.4对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知圆锥的母线长为5cm,底面半径为4cm,AB为圆锥底面圆的一条弦,O为圆锥的顶点.那么△OAB面积的最大值为(  )
A.25cm2B.12.5cm2C.12cm2D.6cm2

查看答案和解析>>

同步练习册答案