精英家教网 > 高中数学 > 题目详情
若曲线y=
32
x2+1
的切线垂直于直线2x+6y+3=0,则这条切线的方程(  )
分析:根据切线与直线2x+6y+3=0垂直,可切线斜率为3,由y=3x=3得切点(1,
5
2
),由直线的点斜式方程可得结果.
解答:解:根据题意所求切线垂直于直线2x+6y+3=0,
已知直线2x+6y+3=0的斜率为-
1
3
,故所求切线的斜率为
-1
-
1
3
=3
由曲线y=
3
2
x2+1
,得y=3x.
令3x=3,解得x=1,代回曲线解析式得,y=
5
2
,即切点为(1,
5
2

由点斜式方程可得,切线方程为y-
5
2
=3(x-1),即6x-2y-1=0,
故选A.
点评:本题主要考查了两条直线垂直的判定,以及利用导数研究曲线上某点切线方程,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若曲线y=
3
2
x2+x-
1
2
的某一切线与x轴平行,则切点坐标为
 
,切线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若曲线y=
3
2
x2+x-
1
2
的某一切线与直线y=4x+3平行,则切点坐标为
(1,2)
(1,2)
,切线方程为
4x-y-2=0
4x-y-2=0

查看答案和解析>>

科目:高中数学 来源: 题型:

若曲线y=
3
2
x2+x-
1
2
的某一切线与直线y=-
1
4
x+3
垂直,则切点坐标为
(1,2)
(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

若曲线y=
3
2
x2+x-
1
2
的某一切线与直线y=4x+3平行,则切点坐标为
(1,2)或(-1,-0)
(1,2)或(-1,-0)

查看答案和解析>>

同步练习册答案