【题目】已知椭圆的离心率,且与直线相切.
(1)求椭圆的标准方程;
(2)过椭圆上点作椭圆的弦,,若,的中点分别为,,若平行于,则,斜率之和是否为定值?
科目:高中数学 来源: 题型:
【题目】为了了解青少年的肥胖是否与常喝碳酸饮料有关,现对30名青少年进行调查,得到如下列联表:
常喝 | 不常喝 | 总计 | |
肥胖 | 2 | ||
不肥胖 | 18 | ||
总计 | 30 |
已知从这30名青少年中随机抽取1名,抽到肥胖青少年的概率为.
(1)请将列联表补充完整;(2)是否有99.5%的把握认为青少年的肥胖与常喝碳酸饮料有关?
独立性检验临界值表:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:,其中n=a+b+c+d.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】记抛物线的焦点为,点在抛物线上,,斜率为的直线与抛物线交于两点.
(1)求的最小值;
(2)若,直线的斜率都存在,且;探究:直线是否过定点,若是,求出定点坐标;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是两条异面直线,直线与都垂直,则下列说法正确的是( )
A. 若平面,则
B. 若平面,则,
C. 存在平面,使得,,
D. 存在平面,使得,,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点为,点在椭圆上.
(1)设点到直线的距离为,证明:为定值;
(2)若是椭圆上的两个动点(都不与重合),直线的斜率互为相反数,求直线的斜率(结果用表示)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中,已知,,,D是边AC上一点,将沿BD折起,得到三棱锥.若该三棱锥的顶点A在底面BCD的射影M在线段BC上,设,则x的取值范围为()
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市户居民的月平均用电量(单位:度),以,,,,,,分组的频率分布直方图如图.
(1)求直方图中的值;
(2)求月平均用电量的众数和中位数;
(3)在月平均用电量为,,,的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com