精英家教网 > 高中数学 > 题目详情
定义在R上的二次函数y=f(x)在(0,2)上单调递减,其图象关于直线x=2对称,则下列式子可以成立的是(  )
A.f(
1
2
)<f(
5
2
)<f(3)
B.f(3)<f(
5
2
)<f(
1
2
C.f(3)<f(
1
2
)<f(
5
2
D.f(
5
2
)<f(3)<f(
1
2
由于y=f(x)关于直线x=2对称,故f(
5
2
)=f(
3
2
),f(3)=f(1),
由于f(x)在(0,2)上单调递减,故f(
3
2
)<f(1)<f(
1
2
),即f(
5
2
) <f( 3) <f(
1
2
)

故选D.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的二次函数f(x)=ax2-2bx+3
(1)如果a是集合{1,2,3,4}中的任一元素,b是集合{0,2,3}中的任一元素,试求函数f(x)在区间[1,+∞)上单调递增的概率,
(2)如果a是从区间[1,4]上任取一个数,b是从区间[0,3]上任取一个数,试求函数f(x)在区间[1,+∞)上单调递增的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•南通模拟)如图所示:图1是定义在R上的二次函数f(x)的部分图象,图2是函数g(x)=loga(x+b)的部分图象.
(1)分别求出函数f(x)和g(x)的解析式;
(2)如果函数y=g(f(x))在区间[1,m)上单调递减,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的二次函数R(x)=ax2+bx+c满足2R(-x)-2R(x)=0,且R(x)的最小值为0,函数h(x)=lnx,又函数f(x)=h(x)-R(x).
(I)求f(x)的单调区间;  
(II)当a≤
1
2
时,若x0∈[1,3],求f(x0)的最小值;
(III)若二次函数R(x)图象过(4,2)点,对于给定的函数f(x)图象上的点A(x1,y1),当x1=
3
2
时,探求函数f(x)图象上是否存在点B(x2,y2)(x2>2),使A、B连线平行于x轴,并说明理由.(参考数据:e=2.71828…)

查看答案和解析>>

科目:高中数学 来源: 题型:

若定义在区间D上的函数y=f(x)对于区间D上任意x1,x2都有不等式
1
2
[f(x1)+f(x2)]≤f(
x1+x2
2
)
成立,则称函数y=f(x)在区间D上的凸函数.
(I)证明:定义在R上的二次函数f(x)=ax2+bx+c(a<0)是凸函数;
(II)对(I)的函数y=f(x),若|f(1)|≤1,|f(2)|≤2,|f(3)|≤3,求|f(4)|取得最大值时函数y=f(x)的解析式;
(III)定义在R上的任意凸函数y=f(x),当q,p,m,n∈N*且p<m<n<q,p+q=m+n,证明:f(p)+f(q)≤f(m)+f(n).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的二次函数R(x)=ax2+bx(a>0)是偶函数,函数f(x)=2lnx-R(x).
(I)求f(x)的单调区间;  
(II)当a≤1时,若x0∈[1,2],求f(x0)的最大值;
(III)若二次函数R(x)图象过(1,1)点,对于给定的函数f(x)图象上的点A(x1,y1),当x1=
1e
时,探求函数f(x)图象上是否存在点B(x2,y2)(x2>1),使A、B连线平行于x轴,并说明理由.(参考数据:e=2.71828…)

查看答案和解析>>

同步练习册答案