精英家教网 > 高中数学 > 题目详情

【题目】已知定义域为R的函数f(x)= 是奇函数.
(1)求a,b的值;
(2)解不等式f(x)<
(3)求f(x)的值域.

【答案】
(1)解:因为f(x)是奇函数,所以f(0)=0﹣1+b=0,解得b=1,

又由f(1)=﹣f(﹣1) ,解得a=2


(2)解:不等式f(x)< ,即不等式

化简可得2x ,∴x>

∴不等式的解集为{x|x> }


(3)解:f(x)=﹣ +

∵2x+1>1,

∴﹣ <f(x)<

∴f(x)的值域是(﹣


【解析】(1)直接根据函数是奇函数,满足f(﹣x)=﹣f(x),把x=0,和x=1代入,即可得到关于a,b的两个等式,解方程组求出a,b的值.(2)不等式f(x)< ,即不等式 ,即可解不等式f(x)< ;(3)f(x)=﹣ + ,即可求f(x)的值域.
【考点精析】通过灵活运用函数奇偶性的性质,掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中, 是边长为4的正方形.平面⊥平面 .

(1)求证: ⊥平面ABC;

(2)求二面角的余弦值;

(3)证明:在线段存在点,使得,并求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,在区间(﹣1, )上单调递减的函数为(
A.y=x2
B.y=3x1
C.y=log2(x+1)
D.y=﹣sinx

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=2x2+bx+c.
(1)对任意x∈[﹣1,1],f(x)的最大值与最小值之差不大于6,求b的取值范围;
(2)若f(x)=0有两个不同实根,f(f(x))无零点,求证: >1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下三个命题 ①设回归方程为 =3﹣3x,则变量x增加一个单位时,y平均增加3个单位;
②两个随机变量的线性相关性越强,则相关系数的绝对值越接近于1;
③在某项测量中,测量结果ξ服从正态分布N (1,σ2) (σ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为0.8.
其中真命题的个数为(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=Asin(ωx+φ)(A,ω>0,0<|φ|<π)在一个周期内的图象如图所示.

(1)求函数f(x)的解析式;
(2)求g(x)=f(3x+ )﹣1在[﹣ ]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,AB=2,AD= ,∠DAB= ,PD⊥AD,PD⊥DC.
(Ⅰ)证明:BC⊥平面PBD;
(Ⅱ)若二面角P﹣BC﹣D为 ,求AP与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年度投入某种产品的宣传费需了解年宣传费 (单位:千元)对年销售量 (单位:t)和年利润 (单位:千元)的影响.对近8年的年宣传费和年销售量 (i128)数据作了初步处理得到右面的散点图及一些统计量的值.

46.6

563

6.8

289.8

1.6

1469

108.8

表中

(1)根据散点图判断, 哪一个适宜作为年销售量关于年宣传费的回归方程类型?(给出判断即可,不必说明理由)

(2)根据(1)的判断结果及表中数据,建立关于的回归方程;

(3)已知这种产品的年利润的关系为.根据(2)的结果回答下列问题:

①年宣传费=49时,年销售量及年利润的预报值是多少?

②年宣传费为何值时,年利润的预报值最大?

附:对于一组数据 其回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)判断函数f(x)的奇偶性,并证明;
(2)利用函数单调性的定义证明:f(x)是其定义域上的增函数.

查看答案和解析>>

同步练习册答案