精英家教网 > 高中数学 > 题目详情
设直线l:y=5x+4是曲线C:f(x)=
1
3
x3-x2
+2x+m的一条切线,g(x)=ax2+2x-23.
(Ⅰ)求切点坐标及m的值;
(Ⅱ)当m∈Z时,存在x∈[0,+∞)使f(x)≤g(x)成立,求实数a的取值范围.
(Ⅰ)设直线l与曲线C相切于点P(x0,y0),
∵f'(x)=x2-2x+2,∴x02-2x0+2=5,解得x0=-1或x0=3,
当x0=-1时,y0=-1,∵P(-1,-1)在曲线C上,∴m=
7
3

当x0=3时,y0=19,∵P(3,19)在曲线C上,∴m=13,
∴切点P(-1,-1),m=
7
3

切点P(3,19),m=13.       
(Ⅱ)解法一:∵m∈Z,∴m=13,
h(x)=f(x)-g(x)=
1
3
x3-(1+a)x2+36

若存在x∈[0,+∞)使f(x)≤g(x)成立,则只要h(x)min≤0,
h'(x)=x2-2(1+a)x=x[x-2(1+a)],
(ⅰ)若1+a≥0即a≥-1,令h'(x)>0,得x>2(1+a)或x<0,
∵x∈[0,+∞),∴h(x)在(2(1+a),+∞)上是增函数,
令h'(x)≤0,解得0≤x≤2(1+a),
∴h(x)在[0,2(1+a)]上是减函数,∴h(x)min=h(2(1+a)),
令h(2(1+a))≤0,解得a≥2,
(ⅱ)若1+a<0即a<-1,令h'(x)>0,解得x<2(1+a)或x>0,
∵x∈[0,+∞),∴h(x)在(0,+∞)上是增函数,∴h(x)min=h(0),
令h(0)≤0,不等式无解,∴a不存在,
综合(ⅰ)(ⅱ)得,实数a的取值范围为[2,+∞).
解法二:由f(x)≤g(x)得ax2
1
3
x3-x2+36

(ⅰ)当x≠0时,a≥
1
3
x+
36
x2
-1
,设h(x)=
1
3
x+
36
x2
-1

若存在x∈[0,+∞)使f(x)≤g(x)成立,则只要h(x)min≤a,
h′(x)=
1
3
-
72
x3
=
x3-63
3x3

令h'(x)≥0解得x≥6,∴h(x)在[6+∞)上是增函数,
令h'(x)<0,解得0<x<6,∴h(x)在(0,6)上是减函数,
∴h(x)min=h(6)=2,∴a≥2,
(ⅱ)当x=0时,不等式ax2
1
3
x3-x2+36
不成立,
∴a不存在,
综合(ⅰ)(ⅱ)得,实数a的取值范围为[2,+∞).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设直线l:y=5x+4是曲线C:f(x)=
13
x3-x2
+2x+m的一条切线,g(x)=ax2+2x-23.
(Ⅰ)求切点坐标及m的值;
(Ⅱ)当m∈Z时,存在x∈[0,+∞)使f(x)≤g(x)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

以下五个命题中:
①若两直线平行,则两直线斜率相等;
②设F1、F2为两个定点,a为正常数,且||PF1|-|PF2||=2a,则动点P的轨迹为双曲线;
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④对任意实数k,直线l:kx-y+1-k=0与圆x2+y2-2y-4=0的位置关系是相交;
⑤P为椭圆
x2
a2
+
y2
b2
=1(a>b>0)上一点,F为它的一个焦点,则以PF为直径的圆与以长轴为直径的圆相切.
其中真命题的序号为
③④⑤
③④⑤
.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+bsinx,当x=
π
3
时,f(x)取得极小值
π
3
-
3

(1)求a,b的值;
(2)设直线l:y=g(x),曲线S:y=F(x).若直线l与曲线S同时满足下列两个条件:
①直线l与曲线S相切且至少有两个切点;
②对任意x∈R都有g(x)≥F(x).则称直线l为曲线S的“上夹线”.
试证明:直线l:y=x+2是曲线S:y=ax+bsinx的“上夹线”.
(3)记h(x)=
1
8
[5x-f(x)]
,设x1是方程h(x)-x=0的实数根,若对于h(x)定义域中任意的x2、x3,当|x2-x1|<1,且|x3-x1|<1时,问是否存在一个最小的正整数M,使得|h(x3)-h(x2)|≤M恒成立,若存在请求出M的值;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省福州市罗源一中高二(下)5月月考数学试卷(文科)(解析版) 题型:解答题

设直线l:y=5x+4是曲线C:f(x)=+2x+m的一条切线,g(x)=ax2+2x-23.
(Ⅰ)求切点坐标及m的值;
(Ⅱ)当m∈Z时,存在x∈[0,+∞)使f(x)≤g(x)成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案