精英家教网 > 高中数学 > 题目详情
已知E、F分别是棱长为a的正方体ABCD-A1B1C1D1的棱A1A、CC1的中点,求四棱锥C1-B1EDF的体积.
【答案】分析:连接A1C1、B1D1交于O1,过O1作O1H⊥B1D于H,说明C1到平面B1EDF的距离就是A1C1到平面B1EDF的距离.求出底面B1EDF的面积,求出高O1H,即可求几何体的体积.
解答:解:连接A1C1、B1D1交于O1,过O1作O1H⊥B1D于H,
∵EF∥A1C1
∴A1C1∥平面B1EDF.
∴C1到平面B1EDF的距离就是A1C1到平面B1EDF的距离.
∵平面B1D1D⊥平面B1EDF,
∴O1H⊥平面B1EDF,即O1H为棱锥的高.
∵△B1O1H∽△B1DD1
∴O1H==a,
VC1-B1EDF
=S•O1H
=•EF•B1D•O1H
=a•a•a
=a3
点评:本题考查棱柱、棱锥、棱台的体积,考查空间想象能力,计算能力;是中档题.求体积常见方法有:①直接法(公式法);②分割法;③补形法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知E、F分别是棱长为a的正方体ABCD-A1B1C1D1的棱A1A、CC1的中点,求四棱锥C1-B1EDF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知E、F分别是棱长为a的正方体ABCD-A1B1C1D1的棱AA1、CC1的中点
(1)求证:A1C1∥平面B1EDF;
(2)求四棱锥C1-B1EDF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知E、F分别是棱长为a的正方体ABCD-A1B1C1D1的棱A1A、CC1的中点,求四棱锥C1-B1EDF的体积.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省景德镇市高三(上)11月月考数学试卷(文科)(解析版) 题型:解答题

如图,已知E、F分别是棱长为a的正方体ABCD-A1B1C1D1的棱AA1、CC1的中点
(1)求证:A1C1∥平面B1EDF;
(2)求四棱锥C1-B1EDF的体积.

查看答案和解析>>

同步练习册答案