精英家教网 > 高中数学 > 题目详情

【题目】已知向量 =(cosωx,sinωx), =(cosωx, cosωx),其中ω>0,设函数f(x)=
(1)若函数f(x)的最小正周期是π,求函数f(x)的单调递增区间;
(2)若函数f(x)的图象的一个对称中心的横坐标为 ,求ω的最小值.

【答案】
(1)解:f(x)=cos2ωx+ sinωxcosωx= cos2ωx+ sin2ωx+ =sin(2ωx+ )+

∴T= =π,ω=1,

∴f(x)=sin(2x+ )+

令﹣ 2x+ ,解得 +kπ≤x≤

∴f(x)的单调递增区间是[ +kπ, ],k∈Z


(2)解:∵函数f(x)的图象的一个对称中心的横坐标为

∴sin( )=0,∴ =kπ,解得ω=3k﹣

∵ω>0,∴当k=1时,ω取得最小值


【解析】(1)化简f(x),利用周期公式求出ω得出f(x)的解析式,利用正弦函数的单调性列出不等式解出单调增区间;(2)利用正弦函数的性质得出sin( )=0,解出ω.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数

(2)设函数,其中a∈(1,2),求函数g(x)在区间[1,e]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)= (sinx+cosx+|sinx﹣cosx|)的值域是(
A.[﹣1,1]
B.[﹣ ]
C.[﹣ ,1]
D.[﹣1, ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,离心率等于,它的一个短轴端点恰好是抛物线的焦点

(1)求椭圆的方程;

(2)已知是椭圆上的两点, 是椭圆上位于直线两侧的动点.①若直线的斜率为,求四边形面积的最大值;

②当 运动时,满足,试问直线的斜率是否为定值,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是平行四边形,侧面是边长为2的正三角形, , .

(Ⅰ)求证:平面平面

(Ⅱ)设是棱上的点,当平面时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,直线: ,圆:

(Ⅰ)若,请判断直线与圆的位置关系;

求直线倾斜角的取值范围;

(Ⅲ)直线能否将圆分割成弧长的比值为的两段圆弧?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过椭圆 上一点轴作垂线,垂足为右焦点 分别为椭圆的左顶点和上顶点,且 .

(Ⅰ)求椭圆的方程;

(Ⅱ)若动直线与椭圆交于两点,且以为直径的圆恒过坐标原点.问是否存在一个定圆与动直线总相切.若存在,求出该定圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知α∈(0, ),β∈(0,π),且tan(α﹣β)= ,tanβ=﹣
(1)求tanα;
(2)求2α﹣β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分图象如图所示.

(1)求函数f(x)的解析式;
(2)令g(x)=f(﹣x﹣ ),求g(x)的单调递增区间.

查看答案和解析>>

同步练习册答案