【题目】已知向量 =(cosωx,sinωx), =(cosωx, cosωx),其中ω>0,设函数f(x)= .
(1)若函数f(x)的最小正周期是π,求函数f(x)的单调递增区间;
(2)若函数f(x)的图象的一个对称中心的横坐标为 ,求ω的最小值.
【答案】
(1)解:f(x)=cos2ωx+ sinωxcosωx= cos2ωx+ sin2ωx+ =sin(2ωx+ )+ .
∴T= =π,ω=1,
∴f(x)=sin(2x+ )+ .
令﹣ 2x+ ,解得 +kπ≤x≤ .
∴f(x)的单调递增区间是[ +kπ, ],k∈Z
(2)解:∵函数f(x)的图象的一个对称中心的横坐标为 ,
∴sin( )=0,∴ =kπ,解得ω=3k﹣ .
∵ω>0,∴当k=1时,ω取得最小值
【解析】(1)化简f(x),利用周期公式求出ω得出f(x)的解析式,利用正弦函数的单调性列出不等式解出单调增区间;(2)利用正弦函数的性质得出sin( )=0,解出ω.
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在原点,离心率等于,它的一个短轴端点恰好是抛物线的焦点
(1)求椭圆的方程;
(2)已知、是椭圆上的两点, , 是椭圆上位于直线两侧的动点.①若直线的斜率为,求四边形面积的最大值;
②当, 运动时,满足,试问直线的斜率是否为定值,请说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知且,直线: ,圆: .
(Ⅰ)若,请判断直线与圆的位置关系;
(Ⅱ)求直线倾斜角的取值范围;
(Ⅲ)直线能否将圆分割成弧长的比值为的两段圆弧?为什么?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过椭圆: 上一点向轴作垂线,垂足为右焦点, 、分别为椭圆的左顶点和上顶点,且, .
(Ⅰ)求椭圆的方程;
(Ⅱ)若动直线与椭圆交于、两点,且以为直径的圆恒过坐标原点.问是否存在一个定圆与动直线总相切.若存在,求出该定圆的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)令g(x)=f(﹣x﹣ ),求g(x)的单调递增区间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com